Fire Scout unmanned aerial vehicle avionics run by COTS computers

By John McHale

RANCHO BERNARDO, Calif., 23 Dec. 2009. The Fire Scout unmanned helicopter from Northrop Grumman Aerospace Systems in Rancho Bernardo, Calif., uses commercial-off-the-shelf (COTS) avionics for its flight control system (see related story entitled U.S. Navy avionics systems integrators embrace open architectures to combat parts obsolescence).

The Fire Scout's avionics are similar to those of manned systems, says John VanBrabant, Fire Scout domestic maritime business development manager at Northrop Grumman Aerospace. The main exception is with redundant vehicle management system that has a vehicle management computer (VMC).

The unmanned aerial vehicle (UAV) is autonomous with a pre-programmed mission, VanBrabant says. The operator onboard ship or the ground can take over with the click of a mouse, but otherwise it flies on its own, he adds.

The flight control system is separate from the UAV payload system to enable payload changes without recertifying flight-control software, VanBrabant says. "The Navy has spent a lot of money on software development and wants to reuse as much as possible," he adds.

Northrop Grumman designed the system to uses as much COTS equipment as possible and use an open architecture to manage component obsolescence, VanBrabant says. The COTS vehicle management computer and other parts of the avionics are designed and produced by GE Fanuc Intelligent Platforms in Charlottesville, Va., VanBrabant says.

In the case of Fire Scout, GE Fanuc also supplies a payload interface computer and the router/switch for each Fire Scout, explains says Peter Cavill, general manager of military & aerospace products at GE Fanuc.
 
"The VMC is a self contained digital computer containing processors, memory, input/output circuits, and associated support circuits required to perform the flight control and vehicle management functions," Cavill says. "The VMC is intended to function within a dual redundant vehicle management system (VMS), with one additional identical VMC operating in frame synchronous fashion, providing fault-tolerant control of UAV flight control and subsystems. Each VMC includes cross channel data links (CCDL) for the exchange of input signals.

"The Vehicle Management Computer (VMC) functions as the core computational and control element within a redundant control system on critical airborne platforms," Cavill continues. "The VMC performs functions critical to flight safety including guidance and navigation, flight path, and vehicle stability control, and vehicle subsystems control."

The compact VMC has six 3U CompactPCI slots, makes use of a single-board computer with a PowerPC 750/755 400-500 MHz processor, and support for the Wind River Systems VxWorks and Green Hills Integrity real-time operating systems (RTOSs), Cavill says.

The computer also "interfaces with aircraft sensors, inceptors, actuators, and utilities/subsystems equipment primarily via high speed serial data networks," he explains. "The VMC performs the core flight control computing and failure monitoring functions while relegating the bulk of input/output interfacing to Remote Input/Output Units (RIU), which are also components of the VMS.

The UAV performs an autonomous landing through its UAV common automatic recovery system (UCARS) from Sierra Nevada Corp. in Sparks, Nev., VanBrabant says. At the end of its mission it will hover behind the ship, wait for a signal from the ship to land and use its instruments to determine the speed of the ship and its pitch and position in the water to make a proper landing, VanBrabant explains.

These are all actions that a pilot would normally make using instinctive visual cues, VanBrabant says. With a UAV the system must be completely preprogrammed to perform those functions automatically, he adds.

According to the Sierra Nevada website "he UCARS-V2 was developed to provide day/night, all-weather, automatic landing and takeoff capabilities for unmanned aerial vehicle (UAV) systems operating from shipboard and/or fixed-base land environments. The UCARS-V2 is a direct descendent of the UCARS UPN-51 system that is in service today with the U.S. Marine Corps Pioneer UAV. The UCARS-V2 consists of two primary components: a ground based radar track subsystem (TS) and an air vehicle mounted airborne transponder subsystem (AS). UCARS-V2 can also provide an automatic take-off capability for both fixed and rotary wing UAVs. UCARS-V2 has been integrated to perform automatic take-off and/or landing operations on numerous different UAS."

The Fire Scout is currently flying off of a U.S. Navy guided-missile frigate -- the USS McInerney -- and performing naval operations in the Pacific Ocean and Caribbean Sea, VanBrabant says.

According to Northrop Grumman data sheets the system is based on the "Schweizer Model 333 manned helicopter, can autonomously take off and land on any aviation-capable warship and at unprepared landing zones in proximity to the forward edge of the battle area."

It is basically a unmanned version of the H-60 helicopter and primarily H-60 pilots are the operators of the Fire Scout, VanBrabant says.

Fire Scout's endurance exceeds eight hours and it can provide coverage 110 nautical miles from the launch site. The aircraft's tactical baseline payload includes electro-optical/infrared sensors and a laser pointer/laser rangefinder to help the system "find tactical targets, track and designate targets, accurately provide targeting data to strike platforms, and perform battle damage assessment," according to the data sheets.

Subscribe

Follow me on Twitter

Join the PennWell Aerospace and Defense Media Group on Linkedin at http://bit.ly/9MXl9

Become a fan of Military & Aerospace Electronics on Facebook at http://bit.ly/1VGM0Q

Post your aerospace and defense-related material to the #milaero community on Twitter. Use the #milaero hashtag.


Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:


  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

Rigid Printed Circuit Boards

Rigid printed circuit boards can only meet diverse industrial applications if the best materials ...

Printed Circuit Board Assembly

Printed Circuit Board Assembly (PCB ASSY) is as critical a process as circuit board manufacturing.

XPand6020 | Small Form Factor (SFF) System Featuring XPedite5205 Running Cisco IOS® and XPedite7450

The XPand6020 is a Small Form Factor (SFF) system that features an XPedite5205, which runs Cisco ...

XChange3012 | 3U VPX PCIe and Gigabit Ethernet Integrated Switch with XMC and Management Support

The XChange3012 is a conduction- or air-cooled 3U VPX module that provides both PCI Express and E...

XChange3019 | 3U VPX 10 Gigabit Ethernet Switch with XMC and Optional Managed Switching and Routing Support

The XChange3019 is a conduction- or air-cooled, 3U VPX, 10 Gigabit Ethernet switch module. It pro...

XCalibur4444 | Intel® Core™ i7 Processor-Based Conduction-Cooled 6U VPX Module

The XCalibur4444 is a high-performance, multiprocessing, 6U VPX, single board computer that is id...

XCalibur4500 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 6U CompactPCI Module

The XCalibur4500 is a high-performance 6U CompactPCI single board computer that is ideal for rugg...

XPand1400 Series | Development Platform For XPand6000 Series, X-ES COM Express® Modules, and PMC/XMC Modules

The XPand1400 Series COM Express Development Platform targets the X-ES Small Form Factor (SFF) XP...

XPand1300 | 3U VPX Air-Cooled Development Platform

The XPand1300 is a low-cost, flexible, development platform. This system supports up to fifteen 0...

XPedite7530 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 3U CompactPCI Module

The XPedite7530 is a high-performance 3U CompactPCI single board computer that is ideal for rugge...

Related Companies

Uniforce Sales and Engineering

Provides solutions to machine vision and image acquisition in many applications, including in the fields of medical, ...

TASC Technical & Assembly Services Corporation Electronic Equipment Manufacturing

Electronic Manufacturing sub-contractor. Circuit Board assembly, Cable Assembly, Wire Harness Assembly, Box Build Ass...

General Atomics Aeronautical Systems Inc

GA-ASI is a leading manufacturer of proven, reliable Remotely Piloted Aircraft (RPA) systems, radars, and electro-opt...

DDC-I Inc

Offers complete solutions for embedded software developers with a focus on mission- and safety-critical applications....

Curtiss-Wright Defense Solutions

About Curtiss-Wright Defense Solutions Curtiss-Wright Defense Solutions (CWDS) is a long established techno...

United Electronic Industries Inc

UEI is a leader in the PC/Ethernet data acquisition and control, Data Logger/Recorder and Programmable Automation Con...

Harris Corporation

Harris provides advanced, technology-based solutions that solve government and commercial customers' mission critical...

Crane Aerospace & Electronics

When failure is NOT an option...rely on Crane Aerospace & Electronics. We supply high-density, high-reliability c...

MERITEC

Signal integrity leaders and preferred vertically integrated manufacturer of high-performance electrical and electron...

AcQ Inducom

Develops and produces non-certified and certified high-tech modular hardware- and software solutions for on-board and...
Wire News provided by   

Press Releases

Model INCX-4001

The INCX-4001 consists of a high quality audio transceiver specifically designed to implement a complete fiber optic intercom.

Model PS-1210

The PS-1210 is a 1A, 12VDC stand-alone or rack mountable non-switcher (no RF noise) power supply.

Model OS-3121

Optical switches are utilized to disconnect, bypass and reroute fiber optic communications. All of these optical switches are purely optical path, there is no optical to e...

Webcasts

New Design Tools That Help You Develop Radar That Sees the Un-seeable and Detects the Undetectable

Xilinx EW/ISR System Architect, Luke Miller, has new tricks and he’s going to tell you all about them in a new Xilinx Webinar—for free. His Webinar will cover new ways to implement Radar functions including ...
Sponsored by:

All Access Sponsors


Mil & Aero Magazine

July 2015
Volume 26, Issue 7
file

Download Our Apps



iPhone

iPad

Android

Follow Us On...



Newsletters

Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information
SUBSCRIBE

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities
SUBSCRIBE

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers
SUBSCRIBE

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.
SUBSCRIBE

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications
SUBSCRIBE

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles
SUBSCRIBE