DARPA takes deep-sea sonar program for advanced anti-submarine warfare (ASW) to the next level

ARLINGTON, Va., 6 Jan. 2011. Ocean sensor specialists at the U.S. Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., are taking a project to develop a deep-sea sonar system for advanced anti-submarine warfare to the next level. The project calls for revolutionary advances in extremely deep-operating undersea surveillance systems to protect U.S. Navy aircraft carriers and their support vessels from quiet enemy attack submarines.

DARPA issued a broad agency announcement (DARPA-BAA-11-24) Tuesday for Phase 1b, Phase 2, and Phase 3 of the Deep Sea Operations (DSOP) for deep-ocean surveillance submarine warfare technologies involving sonar and non-acoustic sensors that take advantage of unique signal propagation in the deep ocean.

Phase 1b completes technology risk reduction for the program that began with architecture studies in 2010, and is open to all proposers. Phase 2 will build a scalable sonar system prototype, and Phase 3 will scale the prototype to meet final goals of the program. Phase 3 will emphasize energy, communications, planning tools, and Navy systems.

Proposals should describe a developmental sonar system for large-area coverage, significant fractional hold time, low operational cost, and other deep-sea ASW capabilities. This procurement will favor ambitious system designs that employ deep ocean platform mobility. The best DSOP solutions will use future advances in energy capacity or delivery to extend endurance and improve overall performance.

Navy fixed-site undersea sensor systems today include the Fixed Distributed System (FDS) and the Sound Surveillance System (SOSUS), which are used in ocean choke points in the Caribbean as well as the straits between Greenland, Iceland, Greenland, and the United Kingdom -- commonly referred to as the GIUK Gap.

For the Deep Sea Operations (DSOP) program, DARPA scientists want to use deep-sea areas known as the sound fixing and ranging channel -- also known as the deep sound channel -- that exists at ocean depths below about 3,000 feet where the water is cold, silent, and dense, and where the speed of sound is at its slowest.

Conditions in these areas act as a sound waveguide that enables low-frequency sound waves to travel for thousands of miles. DARPA wants to develop sensors that essentially look upward through this acoustically silent environment to detect the low-frequency sounds of enemy submarines against a quiet background at long ranges.

DARPA experts assume that deep-ocean areas are particularly advantageous for sound navigation and ranging technologies -- sonar for short -- yet will accept non-acoustic solutions, as well.

Goals of the program include the ability to achieve long-range detection and classification of submarines; the means to communicate underwater over long distances; and the ability to manage electrical energy to operate in hostile deep-ocean conditions for long periods.

Technologies developed under the Deep Sea Operations programs must result in sensors that operate near the ocean bottom; take advantage of distributed nodes; that can be configured to a range of operations, and environments; and adapts to the mobility of friendly and enemy submarines and surface warships.

Proposers must have at least a secret facility clearance and the capability to conduct secret-level research.

Companies interested in participating in the Phase 1b, Phase 2, and Phase 3 of the DSOP program should submit proposals no later than 1 July 2011. For questions or concerns contact DARPA by fax at 703-807-9925, by e-mail at DARPA-BAA-11-24@darpa.mil, or by post at DARPA/STO 24, ATTN: DARPA-BAA-11-24, 3701 North Fairfax Drive, Arlington, VA 22203-1714.

More information is online at http://www.fbodaily.com/archive/2011/01-January/06-Jan-2011/FBO-02353502.htm.


Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:


  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

XPand6020 | Small Form Factor (SFF) System Featuring XPedite5205 Running Cisco IOS® and XPedite7450

The XPand6020 is a Small Form Factor (SFF) system that features an XPedite5205, which runs Cisco ...

XPort3200 | Freescale QorIQ P1020 Processor-Based Conduction- or Air-Cooled XMC/PMC IEEE 1588v2 Grandmaster Clock Module

The XPort3200 is a rugged, IEEE 1588v2 Precision Time Protocol (PTP) ordinary clock with grandmas...

XChange3019 | 3U VPX 10 Gigabit Ethernet Switch with XMC and Optional Managed Switching and Routing Support

The XChange3019 is a conduction- or air-cooled, 3U VPX, 10 Gigabit Ethernet switch module. It pro...

XPand4206 | Rugged Intel® Core™ i7-Based Multiprocessor COTS System with 10 Gigabit Ethernet Fabric

The XPand4206 is a high-performance computing and networking platform for environmentally demandi...

XCalibur4401 | Intel® Core™ i7 Processor-Based Conduction- or Air-Cooled 6U CompactPCI Single Board Computer

The XCalibur4401 is a high-performance, 6U CompactPCI, multiprocessing, single board computer tha...

XPedite6100 | Freescale Quad-Core, T1042 Processor-Based, Air-Cooled XMC/PrPMC with Four Gigabit Ethernet Ports

The XPedite6100 is a high-performance, XMC/PrPMC, single board computer supporting a Freescale Qo...

XPedite7472 | Intel® Core™ i7 Processor-Based Conduction- or Air-Cooled 3U VPX-REDI SBC with SecureCOTS™

The XPedite7472 is a secure and high-performance, 3U VPX-REDI, single board computer based on the...

XPort5005 | XMC Form Factor PCIe Mini Card Carrier Board

The XPort5005 is an XMC module that can be quickly configured to support a platform’s specific I/...

XChange3100 | 6U VPX 10 Gigabit Ethernet Switch with Optional Layer 2 Switching and Layer 3 Routing Management Support

The XChange3100 is a conduction- or air-cooled, 6U OpenVPX™ 10 Gigabit Ethernet switch module. Th...

XPand4208 | Flight Qualified Intel® Core™ i7-Based Multiprocessor 3U OpenVPX™ COTS System

The XPand4208 is a high-performance, expandable, computing and networking platform for environmen...

Related Companies

General Atomics Aeronautical Systems Inc

GA-ASI is a leading manufacturer of proven, reliable Remotely Piloted Aircraft (RPA) systems, radars, and electro-opt...

DiCon Fiberoptics Inc

Offers fiber optic switches, tunable filters, and VOAs. Founded in 1986, the company is a US based, AS9100 certified,...

Curtiss-Wright Defense Solutions

About Curtiss-Wright Defense Solutions Curtiss-Wright Defense Solutions (CWDS) is a long established techno...

DDC-I Inc

Offers complete solutions for embedded software developers with a focus on mission- and safety-critical applications....

Harris Corporation

Harris provides advanced, technology-based solutions that solve government and commercial customers' mission critical...

United Electronic Industries Inc

UEI is a leader in the PC/Ethernet data acquisition and control, Data Logger/Recorder and Programmable Automation Con...

Crane Aerospace & Electronics

When failure is NOT an option...rely on Crane Aerospace & Electronics. We supply high-density, high-reliability c...

MERITEC

Signal integrity leaders and preferred vertically integrated manufacturer of high-performance electrical and electron...

AcQ Inducom

Develops and produces non-certified and certified high-tech modular hardware- and software solutions for on-board and...

Advanced Conversion Technology Inc

ACT designs and manufactures, since 1981, an extensive range of AC-DC and DC-DC power supplies (switching, linear, ra...
Wire News provided by   

Press Releases

Model INCX-4001

The INCX-4001 consists of a high quality audio transceiver specifically designed to implement a complete fiber optic intercom.

Model PS-1210

The PS-1210 is a 1A, 12VDC stand-alone or rack mountable non-switcher (no RF noise) power supply.

Model OS-3121

Optical switches are utilized to disconnect, bypass and reroute fiber optic communications. All of these optical switches are purely optical path, there is no optical to e...

Webcasts

New Design Tools That Help You Develop Radar That Sees the Un-seeable and Detects the Undetectable

Xilinx EW/ISR System Architect, Luke Miller, has new tricks and he’s going to tell you all about them in a new Xilinx Webinar—for free. His Webinar will cover new ways to implement Radar functions including ...
Sponsored by:

All Access Sponsors


Mil & Aero Magazine

July 2015
Volume 26, Issue 7
file

Download Our Apps



iPhone

iPad

Android

Follow Us On...



Newsletters

Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information
SUBSCRIBE

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities
SUBSCRIBE

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers
SUBSCRIBE

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.
SUBSCRIBE

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications
SUBSCRIBE

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles
SUBSCRIBE