DARPA aims at increasing embedded computing power efficiency from 1 to 75 GFLOPS per Watt

ARLINGTON, Va., 3 Oct. 2012. Scientists at the U.S. Defense Advanced Projects Agency (DARPA) in Arlington, Va., are looking to two technology companies to find ways to increase the power efficiency of high-performance embedded computing (HPEC) systems to from today's 1 billion floating point operations per second per Watt (GFLOPS/w), to 75 GFLOPS/w.

The DARPA Microsystems Technology Office (MTO) last week awarded a $6.3 million contract to SRI International in Princeton, N.J.; and an $8.7 million contract to Reservoir Labs Inc. in New York for the Power Efficiency Revolution For Embedded Computing Technologies (PERFECT) program, which seeks to overcome power efficiency barriers that limit the capabilities of military embedded systems.

Overall, the DARPA PERFECT program seeks to overcome limits on size, weight, and power (SWaP), and limited ability to dissipate waste heat, in embedded computing systems on military vehicles, ships, and aircraft. Additional PERFECT program contracts may be awarded.

Many intelligence, surveillance, and reconnaissance (ISR) systems today, for example, have sensors that collect far more information than can be processed onboard in real time, DARPA researchers say. This results in delayed processing of potentially valuable intelligence information, and sometimes discarding this kind of information altogether.

Current embedded processing systems have power efficiencies of around 1 GFLOPS/w, but experts say they believe at least 50 GFLOPS/w are necessary today, with requirements of 75 GFLOPS/w anticipated in the near future.

In the past, computing systems could rely on increasing computing performance with each processor generation, following Moore’s Law. This this free ride in processing performance increases, however, is over, DARPA scientists point out. Today, increasing clock speeds results in unacceptably large power increases.

The PERFECT program seeks to provide a power efficiency of 75 GFLOPS/w in embedded computing systems by taking a revolutionary approach to processing power efficiency, including near-threshold voltage operation and massive heterogeneous processing concurrency, while tolerating the resulting increased rate of soft errors.

The PERFECT program also will capitalize on anticipated industry fabrication geometry advances to 7 nanometers by developing a simulation capability to measure and demonstrate progress, since the program will not build operational hardware. While the PERFECT program addresses embedded systems processing power efficiencies, it will not focus on exascale processing issues, DARPA researchers say.

The current PERFECT program contracts concern seven elements: architecture, concurrency, resilience, locality, algorithms, simulation, and test and verification.

The architecture element focuses on improving embedded processing system power efficiency. Concurrency involves the hardware and software to support high levels of concurrency, or millions of concurrent execution streams. Resilience focuses on soft errors. Locality concerns keeping run-time data communication to a minimum by storing operands close to the referencing processors, in terms of energy. Algorithms concerns high-level software such as power kernels of embedded applications that minimize energy consumption.

Simulation will measure and demonstrate progress, since no operational hardware will be built in this program. Test and verification, meanwhile, is not part of these contracts.

The PERFECT program is in three phases. The first phase, which runs through 2013, focuses on proof of concepts to justify continuing development. The second phase, which runs from 2014 to mid-2015, will develop the technology and techniques to achieve 75 times greater processing power efficiency. The third phase, which runs from mid-2015 through 2017, will develop each technology or technique and provide the path to implementation.

For more information contact SRI International online at www.sri.com, Reservoir Labs at www.reservoir.com, or the DARPA Microsystems Technology Office at www.darpa.mil/Our_Work/MTO.

Follow Military & Aerospace Electronics and Avionics Intelligence news updates on Twitter

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account.


The Innovation That Matters™ Quiz

Innovation is one of the key drivers in the Defense industry. View this short video of Leon Woo, VP of Engineering at Mercury Systems, on the role of innovation. Then, answer 3 simple questions correctly to be entered into a drawing to win an Eddie Bauer fleece jacket!

CONGRATULATIONS TO OUR TWO MOST RECENT WINNERS. "Nick from SPARWAR" and "Bridget from AOC."


Featured Slideshow

Evolution of the American soldier

The American soldier has come a long way since the beginning of the Republic 237 years ago. While uniforms for early soldiers were based on cost and utility, soldiers' clothing eventually considered ballistic protection, increasing storage space, protection from poison gas and other contaminants.

Related Products

RR2P Removable Canister RAID System

Transportable data storage for mobile field use aboard planes, ships and ground transport. 2U, du...

API DC Link Power Film Capacitors

High reliability DC link capacitors for power inverter applications which require superior life e...

XPort9200 Conduction- or Air-Cooled 12-Channel High-Speed CAN Bus XMC or PMC

The XPort9200 is a conduction- or air-cooled 12-channel CAN bus XMC or PMC module. Each high-spee...

Related Companies

Winchester Systems Inc

At its founding in 1981, Winchester Systems introduced its first 5 MB disk system for Intel development system users....

API Technologies Corp

Who We Are API Technologies is a dominant technology provider of RF/microwave, microelectronics, and security technol...

Extreme Engineering Solutions Inc (X-ES)

 Extreme Engineering Solutions, Inc. (X-ES) is a leader in the design, manufacture, and support of standard and ...
Wire News provided by   

Most Popular Articles

Webcasts

On Demand Webcasts

Engineering the VPX high-speed data path for physical and signal integrity

Join Arrow Electronics and TE Connectivity, for an overview webinar of the standards, technologies and trends involving VITA and TE.

Design Strategy Considerations for DO-178C Certified Multi-core Systems

Join Wind River to learn how system architecture and design choices can minimize your DO-178C certification challenges.

Sponsored by:

Flying, Sailing or Driving - The Rugged, Embedded Intel-based Server that goes where you need it!Flying Sailing or Driving

Leveraging the power of server-class processors is no longer relegated to the confines of data centers. Through several innovations, Mercury Systems has ruggedized Intel’s server-class chips for deployment. ...
Sponsored by:

social activity

All Access Sponsors


Mil & Aero Magazine

February 2014
Volume 25, Issue 2
file

Download Our Apps



iPhone

iPad

Android

Follow Us On...



Newsletters

Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information
SUBSCRIBE

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers
SUBSCRIBE

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications
SUBSCRIBE

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles
SUBSCRIBE