DARPA aims at increasing embedded computing power efficiency from 1 to 75 GFLOPS per Watt

ARLINGTON, Va., 3 Oct. 2012. Scientists at the U.S. Defense Advanced Projects Agency (DARPA) in Arlington, Va., are looking to two technology companies to find ways to increase the power efficiency of high-performance embedded computing (HPEC) systems to from today's 1 billion floating point operations per second per Watt (GFLOPS/w), to 75 GFLOPS/w.

The DARPA Microsystems Technology Office (MTO) last week awarded a $6.3 million contract to SRI International in Princeton, N.J.; and an $8.7 million contract to Reservoir Labs Inc. in New York for the Power Efficiency Revolution For Embedded Computing Technologies (PERFECT) program, which seeks to overcome power efficiency barriers that limit the capabilities of military embedded systems.

Overall, the DARPA PERFECT program seeks to overcome limits on size, weight, and power (SWaP), and limited ability to dissipate waste heat, in embedded computing systems on military vehicles, ships, and aircraft. Additional PERFECT program contracts may be awarded.

Many intelligence, surveillance, and reconnaissance (ISR) systems today, for example, have sensors that collect far more information than can be processed onboard in real time, DARPA researchers say. This results in delayed processing of potentially valuable intelligence information, and sometimes discarding this kind of information altogether.

Current embedded processing systems have power efficiencies of around 1 GFLOPS/w, but experts say they believe at least 50 GFLOPS/w are necessary today, with requirements of 75 GFLOPS/w anticipated in the near future.

In the past, computing systems could rely on increasing computing performance with each processor generation, following Moore’s Law. This this free ride in processing performance increases, however, is over, DARPA scientists point out. Today, increasing clock speeds results in unacceptably large power increases.

The PERFECT program seeks to provide a power efficiency of 75 GFLOPS/w in embedded computing systems by taking a revolutionary approach to processing power efficiency, including near-threshold voltage operation and massive heterogeneous processing concurrency, while tolerating the resulting increased rate of soft errors.

The PERFECT program also will capitalize on anticipated industry fabrication geometry advances to 7 nanometers by developing a simulation capability to measure and demonstrate progress, since the program will not build operational hardware. While the PERFECT program addresses embedded systems processing power efficiencies, it will not focus on exascale processing issues, DARPA researchers say.

The current PERFECT program contracts concern seven elements: architecture, concurrency, resilience, locality, algorithms, simulation, and test and verification.

The architecture element focuses on improving embedded processing system power efficiency. Concurrency involves the hardware and software to support high levels of concurrency, or millions of concurrent execution streams. Resilience focuses on soft errors. Locality concerns keeping run-time data communication to a minimum by storing operands close to the referencing processors, in terms of energy. Algorithms concerns high-level software such as power kernels of embedded applications that minimize energy consumption.

Simulation will measure and demonstrate progress, since no operational hardware will be built in this program. Test and verification, meanwhile, is not part of these contracts.

The PERFECT program is in three phases. The first phase, which runs through 2013, focuses on proof of concepts to justify continuing development. The second phase, which runs from 2014 to mid-2015, will develop the technology and techniques to achieve 75 times greater processing power efficiency. The third phase, which runs from mid-2015 through 2017, will develop each technology or technique and provide the path to implementation.

For more information contact SRI International online at www.sri.com, Reservoir Labs at www.reservoir.com, or the DARPA Microsystems Technology Office at www.darpa.mil/Our_Work/MTO.

Follow Military & Aerospace Electronics and Avionics Intelligence news updates on Twitter


Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:


  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

XPedite7501 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled XMC Module

The XPedite7501 is a high-performance, low-power, XMC module based on the 5th generation Intel® C...

XCalibur4500 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 6U CompactPCI Module

The XCalibur4500 is a high-performance 6U CompactPCI single board computer that is ideal for rugg...

XPedite7530 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 3U CompactPCI Module

The XPedite7530 is a high-performance 3U CompactPCI single board computer that is ideal for rugge...

XCalibur4501 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction-Cooled 6U CompactPCI Module

The XCalibur4501 is a high-performance 6U CompactPCI single board computer that is ideal for rugg...

XPedite7570 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 3U VPX-REDI Module

The XPedite7570 is a high-performance, 3U VPX-REDI, single board computer based on the 5th genera...

XCalibur4540 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 6U VPX Module

The XCalibur4540 is a high-performance, 6U OpenVPX™, multiprocessing, single board computer that ...

XPedite7572 | 5th Gen Intel® Core™ i7 Broadwell-H Based Conduction- or Air-Cooled 3U VPX-REDI Module with SecureCOTS™

The XPedite7572 is a secure and high-performance, 3U VPX-REDI, single board computer based on the...

Medusa VPX3424

The AcQ Inducom “Medusa”VPX3424 is a 3U OpenVPX™ Single Board Computer (SBC) featuring the T4240 ...

XPedite7470 | Intel® Core™ i7 Processor-Based Conduction- or Air-Cooled 3U VPX-REDI SBC

The XPedite7470 is a high-performance, low-power, 3U VPX-REDI, single board computer based on the...

XChange3100 | 6U VPX 10 Gigabit Ethernet Switch with Optional Layer 2 Switching and Layer 3 Routing Management Support

The XChange3100 is a conduction- or air-cooled, 6U OpenVPX™ 10 Gigabit Ethernet switch module. Th...

Related Companies

Stealth.com

Manufactures industrial rugged computers and peripherals, including custom rack servers, rugged LCD monitors, mini PC...

AcQ Inducom

Develops and produces non-certified and certified high-tech modular hardware- and software solutions for on-board and...

Master Bond

For over 35 years, Master Bond has been supplying aerospace and defense manufacturers with custom formulated compound...

United Electronic Industries Inc

UEI is a leader in the PC/Ethernet data acquisition and control, Data Logger/Recorder and Programmable Automation Con...

Intersil

Specializes in the design and manufacture of high performance analog semiconductors, Products include amplifiers, ana...

Innovative Integration

  Since 1988, Innovative Integration has grown to become one of the world's leading suppliers of DSP and data ac...

Active Silicon Inc

Designs and manufactures frame grabbers and embedded vision systems in PCI express, PCI/104-express, PMC, cPCI and C...

Electronic Development Labs Inc (EDL)

Since 1943, EDL has strived to provide quality products, outstanding customer service, and superior technical support...

North Atlantic Industries Inc

The top 10 defense companies worldwide rely  on NAI Solutions NAI is a leading independent provider of specializ...

MPL AG

MPL AG develops and manufactures rugged embedded computers and ethernet solutions with high quality standards. The su...
Wire News provided by   

Press Releases

Model INCX-4001

The INCX-4001 consists of a high quality audio transceiver specifically designed to implement a complete fiber optic intercom.

Model PS-1210

The PS-1210 is a 1A, 12VDC stand-alone or rack mountable non-switcher (no RF noise) power supply.

Model OS-3121

Optical switches are utilized to disconnect, bypass and reroute fiber optic communications. All of these optical switches are purely optical path, there is no optical to e...

Webcasts

New Design Tools That Help You Develop Radar That Sees the Un-seeable and Detects the Undetectable

Xilinx EW/ISR System Architect, Luke Miller, has new tricks and he’s going to tell you all about them in a new Xilinx Webinar—for free. His Webinar will cover new ways to implement Radar functions including ...
Sponsored by:

The Latest from Paris Air Show 2015

All Access Sponsors


Mil & Aero Magazine

May 2015
Volume 26, Issue 5
file

Download Our Apps



iPhone

iPad

Android

Follow Us On...



Newsletters

Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information
SUBSCRIBE

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities
SUBSCRIBE

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers
SUBSCRIBE

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.
SUBSCRIBE

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications
SUBSCRIBE

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles
SUBSCRIBE