Raytheon to provide networked sensor processing for newest Burke-class destroyer

WASHINGTON, 18 Jan. 2013. U.S. Navy officials needed a networked sensors and weapons-management system for the future Arleigh Burke-class guided missile destroyer USS Thomas Hudner (DDG-116), the first of the Flight IIA: Technology Insertion versions of the destroyer. They found their solution from the Raytheon Co. Network Centric Systems segment in St. Petersburg, Fla.

The Naval Sea Systems Command in Washington awarded a $20.3 million contract to Raytheon this month to provide an AN/USG cooperative engagement transmission processing set, a key component in the Raytheon Cooperative Engagement Capability (CEC) network-centric sensors and weapons system for Navy surface warships. The latest version of the AN/USG processing set is the AN/USG-2(V).

The Hudner, which should be commissioned in about 2021, is to be the 66th ship of the Arleigh Burke class of destroyers for anti-aircraft, anti-submarine, and anti-surface warfare, as well as strike operations. The ship was ordered early last year from General Dynamics Bath Iron Works in Bath, Maine.

The Hudner is to be a technology-insertion ship with elements of the next generation of Arleigh Burke class destroyers, called Flight III, and Flight III proper is planned to start with DDG-122.

The CEC system conducts air and missile defense by distributing sensor and weapons data by fusing high quality tracking data from participating sensors and distributes it to all other participants to create one common air defense picture based on all sensor data available. This ability enables early target detection and consistent tracking of air contacts. At the heart of the CEC is a communications system.

CEC distributes radar measurement data instead of actual tracks from each CEC unit to all other CEC units, which communicate in pairs during short transmit and receive periods through a narrow directional signal. Data flows across the network in near real time and communication is virtually jam-proof, experts say.

CEC units are able to engage using CEC composite tracks, even when the firing unit does not hold the track. Because CEC combines radar measurement data from all of the ships and aircraft on the network, the CEC picture covers a larger geographic area than any one sensor can, and enhances radar coverage over land.

In theater ballistic missile defense, the CEC provides a continuous fire-control quality track on the incoming missile. Although each ship is able only to maintain track for part of the missile flight, the CEC composite track, based on all the data, is continuous.

Ships operating without CEC must spread their radar energy widely, which limits the time and energy available to search in the difficult land clutter region. Operating together, with CEC, one ship can search the entire volume while the other ships concentrate on the land clutter region.

The AN/USG-2 -- also known as the Cooperative Engagement Transmission Processing Set (CETPS) -- coordinates all task force anti-air warfare (AAW) sensors into one real time, fire control quality composite track picture by distributing sensor data from each cooperating unit to all other cooperating units via a real time line of sight fire control sensor and engagement data distribution network.

The AN/USG CETPS resists the effects of electronic jamming and provides accurate gridlocking between CEC cooperating units. Each cooperating unit independently combines all the distributed sensor data into a common track picture with high capacity, parallel processing and advanced algorithms. The resulting composite track picture is the same on all cooperating units.

The CETPS consists of cooperative sensing, engagement decision, engagement execution and data distribution, and enables all anti-air warfare sensors and weapons in a battle group to function as one distributed system.

The CETPS also enables several battle groups to conduct network-centric operations by sharing common picture and tactical capabilities.

The CETPS is composed of two primary system groups and five subsystem functions. The two primary system groups are the Data Distribution System (DDS) and Cooperative Engagement Processor (CEP). The five subsystem functions are the data distribution, command/display support, sensor cooperation, engagement decision, and engagement execution.

For more information contact Raytheon Network Centric Systems online at www.raytheon.com/businesses/ncs, or Naval Sea Systems Command at www.navsea.navy.mil.

Military & Aerospace Photos

Most Popular Articles

Wire News provided by   

Press Releases

Low Viscosity, One Part Cyanoacrylate Is Non-Toxic and Meets ISO 10993-5 Specifications

Master Bond MB250NT is widely used for a variety of applications ranging from repair to high speed producti...

Thermally Conductive, Two Component Epoxy Passes USP Class VI Tests and ISO 10993-5 Specifications

With biocompatibility and cytotoxicity certifications, Master Bond EP21AOLV-2Med is often selected for bond...

One Component, Snap Cure Epoxy Features High Strength Properties

Suitable for a variety of applications in the electronic, aerospace and OEM industries, Master Bond EP3SP5F...

One Part Epoxy Resists up to 500°F and Meets NASA Low Outgassing Specifications

Master Bond Supreme 12AOHT-LO is a one component epoxy for a variety of bonding and sealing applications in...


Curtiss-Wright Corporation’s Defense Solutions division applauds Northrop Grumman Corporation (NYSE: NOC) o...

Curtiss-Wright’s New Rugged Mobile IP Router Subsystem Features an Integrated Cisco® 5915 ESR Router

Curtiss-Wright Corporation today announced that its Defense Solutions division, a Cisco® Systems Solution T...

VICTORY Shared Processing, Fire Control Computer, and Switch for Ground Vehicles Introduced by Curtiss-Wright

Curtiss-Wright Corporation today announced that its Defense Solutions division has introduced a new fully i...

GE Announces First Sub-Credit Card-Sized Multi-Function High Definition (HD) Video Tracker

HUNTSVILLE, AL.— OCTOBER 13, 2014—GE’s Intelligent Platforms business today announced at AUSA (October 13-...


Meeting the Gen3 backplane challenge with OpenVPX and COTS

Tight Pentagon budgets mean military systems must stay in the field for longer than ever before. This doesn't mean obsolete technology, however. Today's military electronics are being upgraded constantly, an...
Sponsored by:

Design Strategy Considerations for DO-178C Certified Multi-core Systems

Join Wind River to learn how system architecture and design choices can minimize your DO-178C certification challenges.

Sponsored by:

Flying, Sailing or Driving - The Rugged, Embedded Intel-based Server that goes where you need it!Flying Sailing or Driving

Leveraging the power of server-class processors is no longer relegated to the confines of data centers. Through several innovations, Mercury Systems has ruggedized Intel’s server-class chips for deployment. ...
Sponsored by:

All Access Sponsors

Mil & Aero Magazine

April 2015
Volume 26, Issue 4

Download Our Apps




Follow Us On...


Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles