The histories of human flight and electronics are closely intertwined

By John Keller, chief editor
Military & Aerospace Electronics

As of this month, powered flight is one century old. It was on Dec. 17, 1903, that Wilbur Wright and his brother Orville — two bicycle makers from Dayton, Ohio — flew their box-kite-like Wright Flyer for 12 seconds over a windswept beach along the Outer Banks of North Carolina

One hundred years doesn't feel like a lot of time in relation to the entire rich sweep of human history, but consider the technological innovations surrounding manned flight since the Wright Brothers' first flight in 1903; the time span sounds more like a thousand years than only a hundred.

Few human endeavors have inspired frenzied technological innovation as much as manned powered flight has. Of the technological development that manned flight spawned, electronic and optoelectronic technologies have been prime beneficiaries. Radio communications, inertial navigation, radar, radio and satellite navigation, infrared sensors, digital flight control, and optoelectronically networked mission computers are only a few of the technologies that manned flight has pushed along at a breathtaking pace.

To put the tremendously rapid pace of aviation technology into perspective, think about this: in the 44 years after the Wright Brothers' first flight, manned aircraft evolved from the Wrights' powered glider to transcontinental airlifters, to jet fighters, and to Chuck Yeager's first faster-than-the-speed-of-sound flight aboard the X-1 aircraft in 1947. Slightly less than 66 years after the Wrights' first flight — shorter than a typical person's lifetime — human flight moved from flying over the seashore at Kitty Hawk, N.C., to flying over the Sea of Tranquility on the moon.

I often remember my grandfather when I think about aviation. Born in 1899, he lived until 1976, and among the major events of his lifetime were the Wright Brothers' first flight at Kitty Hawk, Neil Armstrong's first step on the moon, and every technology innovation in-between. No other generation has seen such a rapid and relentless march of technology development as my grandfather's, and I have my doubts that I will see such radical innovation in my lifetime.

I think manned flight is such a catalyst for technological development because it so completely captures the imaginations of so many. With manned flight, so much seemed possible, and aviation pioneers such as the Wrights, Glen Curtiss, and Glenn Luther Martin competed tenaciously to determine who would benefit most from the early days of flight.

The Wrights and Curtiss formed their own aircraft companies, which eventually merged into a company that survives today — Curtiss-Wright Corp. of Roseland, N.J. Years ago, Curtiss-Wright primarily developed aircraft and aircraft engines, but today it concentrates on motion control, flow control, and metal treatment, and contains subsidiaries such as electronics specialist Vista Controls Corp. of Santa Clarita, Calif.

The early aviation pioneers had good reason to move ahead as quickly and doggedly as they did. The potential benefits at the time seemed almost limitless. Manned airplane flight — even distinct from manned space flight or unmanned aerial vehicle flight — ended up transforming the daily lives of even the most average among us. Without powered flight, we don't have express mail, reliable worldwide communications, or fast intercontinental travel.

Spinning-mass gyros were among the first technologies that systems designers brought to bear on powered flight. These devices, which led directly to reliable heading indicators, turn-and-slip indicators, and perhaps most importantly, the artificial horizon, enabled pilots to fly at night and in bad weather, and were among the first technological innovations that led to reliable airmail service in the 1920s.

Soon after, systems designers combined gyro-based instruments with a barometric altimeter, which enabled Jimmy Doolittle in 1929 to demonstrate how aircraft pilots could fly safely without being able to see outside the cockpit. Designers also found that combining these instruments led to development of the first autopilots.

Aircraft radios were among the first aviation electronics to see widespread use, and were perhaps the first components that gave rise to a new electronics design discipline that we know today as avionics.

By World War II, electronics designers were hard at work to develop the first radar systems to help warn Britain of approaching Nazi bombers. Designers also developed airborne radar systems to help fighter planes find other aircraft at night. Aircraft radars also gave rise to a shipborne radar system that during the war helped locate surfaced enemy submarines.

Radar development, spurred primarily by aviation, also led to commercial innovations, most notably the microwave oven. In 1946 Percy Spencer, an engineer with the Raytheon Co., discovered that a candy bar in his pocket had melted after he tested a new vacuum tube called a magnetron for a radar research project.

Later he pointed the magnetron at a bag of popcorn kernels and an egg; the kernels popped into popcorn and the egg exploded. Raytheon engineers went on to develop the first microwave oven, which they called the "Radarange."

After radar, came avionics innovations such as airborne datalinks, head-up displays, multifunction displays, so-called "glass cockpits," computer-controlled navigation and weapon systems, fly-by-wire and fly-by-light flight-control systems, and helmet-mounted displays.

Along the way, avionics designers gave rise to standard electronic modules to cut costs and boost efficiency. The SEM-E circuit card — short for standard electronic module — has been part of the avionics in several generations of aircraft. Today other standard cards such as VME and CompactPCI make their way into the latest avionics architectures.

Linking separate electronic-control systems on a digital datalink also is a big part of the heritage of flight. The MIL-STD-1553 1 megabit-per-second databus was developed and released by the U.S. Air Force in 1973, and has linked mission- and flight-control subsystems on such aircraft as the F-15 and F-16 jet fighters, as well as virtually all modern military aircraft.

All these technological innovations lead directly back to that windy beach in North Carolina a century ago. Without the Wrights, humans certainly would have achieved manned flight, and the electronics industry certainly would have progressed from its origins. Still, one wonders where the aviation and electronics industries would be today had it not been for Wilbur and Orville, and their daring exploits 100 years ago this month.



Military & Aerospace Photos

Most Popular Articles

Related Products

F-SIM-LDR ARINC 615A Data Loader

AIT's F-SIM-LDR, or Flight Simulyzer Loader, is a complete ARINC-615A Data Loader development kit...

cPCI-1760-SW-4

AceXtreme® Bridge Device - Smart Protocol Converter

DDC’s AceXtreme Bridge Device converts avionics messages in real time between Ethernet, MIL-STD-1...

Low Voltage Power Supplies for Avionics

Crane Aerospace & Electronics has over 50 years of experience in the design and manufacture of hi...

Transformer Rectifier Units (TRUs)

As the world’s leading supplier of Transformer Rectifier Units (TRUs) for commercial aircraft sin...

RAR-USB

The RAR-USB is an ARINC 429 USB 2.0 adaptor that provides up to sixteen totally independent recei...

DW 251

DW 251 has been developed for specific use in aerospace and aircraft electrical and wiring applic...

Aircraft gearboxes

Positronic's Front Runner Connectors

The Front Runner Series offers a multiplicity of connector features which makes it a first choice...

ANET1553 / ANET429 Ethernet modules

New Ethernet Avionics Databus solutions for MIL-STD-1553A/B and ARINC429 are available. Test & Si...

Related Companies

CES - Creative Electronic Systems SA

Has been designing and manufacturing complex high-performance avionics, defense and communication boards, subsystems ...

Boker's Inc

Boker's, Inc. can manufacture your flat washers, spacers and shims with an outside diameter from 0.080" to 12" and ma...

DLS Electronic Systems Inc

Provides EMC/EMI & Environmental testing to MIL-STD 461-A-F, MIL-STD 810 & RTCA DO-160-C-G, Boeing, Airbus FAA AC20-1...

Speel Praha Ltd

Offers avionics systems, including aircraft monitoring systems, crash-protected solid-state flight data/cockpit voice...

Astro-Med

Designs and manufactures ruggedized printers and Ethernet switches used in demanding military and defense application...

MICCAVIONICS GmbH

Highly innovative, integrated time-critical solutions of an information mission management and command and control sy...

Digital Systems Engineering Inc (DSE)

Harsh-duty ruggedized flat-panel display design and manufacturing for airborne, military, and marine surveillance app...

Interpoint

Supplies high-density, high-reliability Interpoint microelectronics, DC/DC converters and EMI filters to the aerospac...

L-3 Electron Devices

Provides sophisticated, high-fidelity training systems and equipment to enhance operational proficiency on a wide var...

LAI International Inc

LAI International is a leading contract manufacturer of make-complete precision-engineered components and assemblies ...
Wire News provided by   

Press Releases

Low Viscosity, One Part Cyanoacrylate Is Non-Toxic and Meets ISO 10993-5 Specifications

Master Bond MB250NT is widely used for a variety of applications ranging from repair to high speed producti...

Thermally Conductive, Two Component Epoxy Passes USP Class VI Tests and ISO 10993-5 Specifications

With biocompatibility and cytotoxicity certifications, Master Bond EP21AOLV-2Med is often selected for bond...

One Component, Snap Cure Epoxy Features High Strength Properties

Suitable for a variety of applications in the electronic, aerospace and OEM industries, Master Bond EP3SP5F...

One Part Epoxy Resists up to 500°F and Meets NASA Low Outgassing Specifications

Master Bond Supreme 12AOHT-LO is a one component epoxy for a variety of bonding and sealing applications in...

VICTORY Shared Processing, Fire Control Computer, and Switch for Ground Vehicles Introduced by Curtiss-Wright

Curtiss-Wright Corporation today announced that its Defense Solutions division has introduced a new fully i...

CURTISS-WRIGHT CONGRATULATES NORTHROP GRUMMAN ON SUCCESSFUL FIRST FLIGHT OF SECOND MQ-4C TRITON UAS

Curtiss-Wright Corporation’s Defense Solutions division applauds Northrop Grumman Corporation (NYSE: NOC) o...

Curtiss-Wright’s New Rugged Mobile IP Router Subsystem Features an Integrated Cisco® 5915 ESR Router

Curtiss-Wright Corporation today announced that its Defense Solutions division, a Cisco® Systems Solution T...

GE Announces First Sub-Credit Card-Sized Multi-Function High Definition (HD) Video Tracker

HUNTSVILLE, AL.— OCTOBER 13, 2014—GE’s Intelligent Platforms business today announced at AUSA (October 13-...

Webcasts

Meeting the Gen3 backplane challenge with OpenVPX and COTS

Tight Pentagon budgets mean military systems must stay in the field for longer than ever before. This doesn't mean obsolete technology, however. Today's military electronics are being upgraded constantly, an...
Sponsored by:

Design Strategy Considerations for DO-178C Certified Multi-core Systems

Join Wind River to learn how system architecture and design choices can minimize your DO-178C certification challenges.

Sponsored by:

Flying, Sailing or Driving - The Rugged, Embedded Intel-based Server that goes where you need it!Flying Sailing or Driving

Leveraging the power of server-class processors is no longer relegated to the confines of data centers. Through several innovations, Mercury Systems has ruggedized Intel’s server-class chips for deployment. ...
Sponsored by:

All Access Sponsors


Mil & Aero Magazine

April 2015
Volume 26, Issue 4
file

Download Our Apps



iPhone

iPad

Android

Follow Us On...



Newsletters

Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information
SUBSCRIBE

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities
SUBSCRIBE

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers
SUBSCRIBE

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.
SUBSCRIBE

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications
SUBSCRIBE

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles
SUBSCRIBE