Ethernet key technology for network-centric warfare

Steve Rood Goldman is a product manager for high-speed networking at Data Device Corp. in Bohemia, N.Y. He has 15 years of product marketing experience in the networking, telecommunications, and semiconductor industries, and holds a bachelor of science degree in electrical engineering, as well as a master’s degree in management.

Q: DDC is leading efforts to design Ethernet and Gigabit Ethernet technology for military applications. Can you give two examples where this technology is implemented or being implemented in military applications?
A: Ethernet and Gigabit Ethernet is being deployed or implemented in a number of military systems including transport, reconnaissance, bomber, UAV, and rotary-wing aircraft; army ground vehicles; and multiple Navy vessels.

Q: Why Ethernet as opposed to other standards? What are the advantages?

A: The Department of Defense’s (DOD’s) Unmanned Aircraft System (UAS) Roadmap, 2005-2030, encourages the use of “common, network-enabled electrical interfaces such as Gigabit Ethernet.” There are several reasons for this mandate. Ethernet is mature technology with more than 200 million commercial ports sold in 2005 alone. Maturity has resulted in the wide availability of commercial-off-the-shelf (COTS) hardware and software, which has been adapted for military use. Ethernet’s growth in popularity both commercially and in military applications is driven in large part by its native support of IP networks. IP is important enabling technology for the Global Information Grid (GIG), which is the physical embodiment of the military’s network-centric warfare initiative.

Q: What are the main design challenges in adapting Gigabit Ethernet for military applications?

A: Military Ethernet equipment must perform over an extended-temperature range and often needs to operate in a packed chassis where conduction cooling is required. Switches and interface cards developed for telecom or data center applications often use controllers and physical-layer devices designed for commercial temperature ranges. Support for extended-temperature operation and conduction cooling must be designed in from the start, since it fundamentally impacts mechanical design and component selection.

Most computer systems use hardware to manage the physical- and link-layer network protocols for their Ethernet connections, while software handles the upper-level protocols, including TCP/IP and UDP/IP. For connections running at 100 Megabits per second or slower, especially for commercial applications where there is plenty of spare processor bandwidth, managing the upper-level protocols on the host system processor works well. The transition to Gigabit Ethernet in the military has introduced a challenge in handling the additional processing overhead of the TCP/IP and UDP/IP protocols. Military systems are less likely to have processor bandwidth to spare due to a combination of compute-intensive applications and power dissipation restrictions. Protocol offloading techniques offer a solution when boosting overall processor performance is impractical.

Q: Where do Ethernet and Gigabit Ethernet fall short? What are the technological challenges that still must be overcome?

A: IP-based Ethernet networks provide services on a “best effort” basis. This means that unless additional mechanisms are put in place, there are no inherent throughput or delay guarantees. This could be a problem on complex networks, shared by multiple applications with different service requirements. If, for example, real-time video traffic is sharing the same network with a file server, additional provisions must be made to prevent the latency-sensitive video packets from being delayed in an unpredictable way by file server transfers. IP provides a means of tagging traffic priority, but additional protocols are required to classify and manage the traffic.

One such protocol, called Differentiated Services, is used in commercial IP networks. DiffServ uses a small number of priority classes to allocate network bandwidth statistically. For military applications that need guaranteed delay bounds, another approach is needed. Integrated Services protocol is able to manage individual flows throughout the network. This approach requires that all routers on the network implement IntServ and store state information for each flow. As the network scales in size, the storage overhead increases. As a result, IntServ has not been a success for commercial networks, but may be applicable to closed military systems.

Redundancy management is another challenge for military systems using Ethernet. Existing protocols such as Rapid Spanning Tree Protocol (RSTP) and Link Aggregation Control Protocol (LACP) provide robust methods of providing redundancy for commercial networks. But these protocols take on the order of seconds to respond to link failures. Military systems require rapid recovery techniques to prevent data loss. Some commercial aircraft have been implementing networks based on ARINC-664, which is a variant of Ethernet. ARINC-664 provides robust dual-redundancy by simultaneously transmitting traffic on two independent paths. Errors are detected at the receiver, which can also identify and discard duplicate data packets. Error detection and recovery is entirely transparent to the network application. This form of redundancy could be adapted to military use if suitable equipment was made available.

Q: What are the obsolescence issues with Ethernet technology?

A: Unlike most networking technologies, Ethernet has been able to provide a backward-compatible replacement for itself every few years that offers a tenfold performance increase. Today, 1000Base-T connections are 100 times and 10 times faster than legacy 100Base-TX and 10Base-T connections, respectively. But a 1000Base-T network interface card can also communicate seamlessly with a 10/100 switch. Ethernet’s self-replacement capability is a powerful feature, but it does not eradicate obsolescence problems. For example, 1000Base-T requires different cabling than its predecessors to operate at gigabit speed. Likewise, for applications requiring fiber optic connections, 100Base-FX interfaces are incompatible with 1000Base-SX fiber.

Ethernet’s common set of protocols, and its widely-adopted BSD Sockets application interface, ensure that new equipment and applications will interoperate with existing systems.

Click here to enlarge image

Steve Rood Goldman, Product Manager for high-speed networking at Data Device Corp. in Bohemia, N.Y.


Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:


  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles


Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:


  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

XPedite7572 | 5th Gen Intel® Core™ i7 Broadwell-H Based Conduction- or Air-Cooled 3U VPX-REDI Module with SecureCOTS™

The XPedite7572 is a secure and high-performance, 3U VPX-REDI, single board computer based on the...

XCalibur4500 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 6U CompactPCI Module

The XCalibur4500 is a high-performance 6U CompactPCI single board computer that is ideal for rugg...

XCalibur4501 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction-Cooled 6U CompactPCI Module

The XCalibur4501 is a high-performance 6U CompactPCI single board computer that is ideal for rugg...

XCalibur4540 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 6U VPX Module

The XCalibur4540 is a high-performance, 6U OpenVPX™, multiprocessing, single board computer that ...

XPedite7501 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled XMC Module

The XPedite7501 is a high-performance, low-power, XMC module based on the 5th generation Intel® C...

XPedite7530 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 3U CompactPCI Module

The XPedite7530 is a high-performance 3U CompactPCI single board computer that is ideal for rugge...

XPedite7570 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 3U VPX-REDI Module

The XPedite7570 is a high-performance, 3U VPX-REDI, single board computer based on the 5th genera...

Medusa VPX3424

The AcQ Inducom “Medusa”VPX3424 is a 3U OpenVPX™ Single Board Computer (SBC) featuring the T4240 ...

XPand6200 Series | Small Form Factor (SFF) Sub-½ ATR Rugged COTS System utilizing 3U VPX, XMC, and PMC Modules

The XPand6200 Series is a true Commercial-Off-The-Shelf (COTS) Rugged system, supporting many 3U ...

XPedite2470 | 3U VPX Xilinx Virtex-7 FPGA Module with FMC Site and Freescale P1010 Processor

The XPedite2470 is a high-performance, reconfigurable, conduction- or air-cooled, 3U VPX, FPGA pr...

Related Companies

Stealth.com

Manufactures industrial rugged computers and peripherals, including custom rack servers, rugged LCD monitors, mini PC...

AcQ Inducom

Develops and produces non-certified and certified high-tech modular hardware- and software solutions for on-board and...

Master Bond

For over 35 years, Master Bond has been supplying aerospace and defense manufacturers with custom formulated compound...

United Electronic Industries Inc

UEI is a leader in the PC/Ethernet data acquisition and control, Data Logger/Recorder and Programmable Automation Con...

Intersil

Specializes in the design and manufacture of high performance analog semiconductors, Products include amplifiers, ana...

Innovative Integration

  Since 1988, Innovative Integration has grown to become one of the world's leading suppliers of DSP and data ac...

Active Silicon Inc

Designs and manufactures frame grabbers and embedded vision systems in PCI express, PCI/104-express, PMC, cPCI and C...

North Atlantic Industries Inc

The top 10 defense companies worldwide rely  on NAI Solutions NAI is a leading independent provider of specializ...

Electronic Development Labs Inc (EDL)

Since 1943, EDL has strived to provide quality products, outstanding customer service, and superior technical support...

MPL AG

MPL AG develops and manufactures rugged embedded computers and ethernet solutions with high quality standards. The su...
Wire News provided by   

Press Releases

Model INCX-4001

The INCX-4001 consists of a high quality audio transceiver specifically designed to implement a complete fiber optic intercom.

Model PS-1210

The PS-1210 is a 1A, 12VDC stand-alone or rack mountable non-switcher (no RF noise) power supply.

Model OS-3121

Optical switches are utilized to disconnect, bypass and reroute fiber optic communications. All of these optical switches are purely optical path, there is no optical to e...

Webcasts

New Design Tools That Help You Develop Radar That Sees the Un-seeable and Detects the Undetectable

Xilinx EW/ISR System Architect, Luke Miller, has new tricks and he’s going to tell you all about them in a new Xilinx Webinar—for free. His Webinar will cover new ways to implement Radar functions including ...
Sponsored by:

Latest from the Paris Air Show

All Access Sponsors


Mil & Aero Magazine

May 2015
Volume 26, Issue 5
file

Download Our Apps



iPhone

iPad

Android

Follow Us On...



Newsletters

Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information
SUBSCRIBE

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities
SUBSCRIBE

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers
SUBSCRIBE

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.
SUBSCRIBE

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications
SUBSCRIBE

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles
SUBSCRIBE