Weapons at the speed of light

By Courtney E. Howard

Laser weaponry will be a tool in the U.S. military’s arsenal much sooner than many think, with the first applications for missile defense from the ground and the air.

Leading the way is the U.S. Missile Defense Agency’s (MDA’s) Airborne Laser (ABL), expected to be fielded within the next few years. Perhaps the MDA’s most famous program, the Airborne Laser is designed to destroy missiles in their boost phase.

“ABL, with its future capability to destroy a missile in flight, is a critical and necessary component of an integrated missile defense system,” says Alexis Livanos, corporate vice president and president of the Northrop Grumman Space Technology sector in Redondo Beach, Calif.

“The high-energy COIL laser beam, traveling at the speed of light, coupled with the operation of the beacon illuminator that is used for atmospheric compensation, are examples of how we are employing Northrop Grumman advanced technologies to defend our nation and its assets,” Livanos says.

The operational phase of the ABL begins with the six strategically placed infrared sensors that detect the exhaust plume of a boosting missile. Once a target is detected, a kilowatt-class laser, the Track Illuminator (TILL), tracks the missile and determines a precise aim point.

The High Energy Laser Technology Demonstrator (HEL TD) is intended to counter rockets, artillery, and mortars (counter-RAM) at the High Energy Laser Systems Test Facility (HELSTF) at White Sands Missile Range, N.M.
Click here to enlarge image

The Beacon Illuminator (BILL), a second kilowatt-class laser, then measures disturbances in the atmosphere, which are corrected by the adaptive optics system to point and focus the high-energy laser at its intended target. Using a large telescope located in the nose turret of the ABL aircraft—a modified Boeing 747 jetliner—the beam control/fire control system focuses a separate megawatt-class laser beam onto a pressurized area of the boosting missile, holding it there until the concentrated energy causes the missile to break apart, according to the MDA. Contrary to what many may think, the ABL high-energy laser does not explode the missile, but rather heats it to such an extent that it implodes.

This past summer, the Boeing-led ABL team tracked an airborne target, compensated for atmospheric turbulence, and fired a surrogate for its high-energy laser.

During the test, the ABL 747-400F aircraft took off from Edwards Air Force Base, Calif., and used its infrared sensors and its TILL to find and track an instrumented target board located on the U.S. Air Force’s NC-135E Big Crow test aircraft. The Big Crow then fired its beacon laser at the ABL aircraft to enable ABL to measure and compensate for laser-beam distortion caused by the atmosphere. Lastly, ABL fired the surrogate high-energy laser (SHEL) at the Big Crow target board to simulate a missile shootdown. With the exception of ABL’s BILL, this flight test demonstrated the entire engagement sequence from target acquisition to pointing and firing the SHEL.

“This successful test shows that ABL can find and track a target, use its beam control/fire control system to compensate for atmospheric turbulence, and fire a surrogate high-energy laser to simulate a missile intercept,” says Pat Shanahan, vice president and general manager of Boeing Missile Defense Systems in Washington. “We have now demonstrated most of the steps needed for the Airborne Laser to engage a threat missile and deliver precise and lethal effects against it.”

In upcoming flight tests, ABL will again demonstrate the engagement sequence, but this time use the return from its BILL instead of the Big Crow’s beacon laser to measure atmospheric distortion.

The U.S. Missile Defense Agency’s Airborne Laser (ABL) is designed to destroy missiles in their boost phase.
Click here to enlarge image

The program will install the actual Northrop Grumman-built high-energy laser in the aircraft to prepare for the first intercept test against an in-flight ballistic missile in 2009. The high-power chemical laser has completed rigorous ground testing at Edwards Air Force Base and is being prepared for installation, Boeing officials say.

Boeing is the prime contractor for ABL, which will provide a speed-of-light capability to destroy all classes of ballistic missiles in their boost phase of flight. Boeing provides the modified aircraft and the battle-management system and is the overall systems integrator. ABL partners are Northrop Grumman, which supplies the TILL and BILL high-energy lasers, and Lockheed Martin, which provides the nose-mounted turret and the beam control/fire control system.

Northrop Grumman mobile lasers

The U.S. Army has selected the Northrop Grumman Space Technology segment for the first phase of a program to demonstrate a mobile, solid-state laser weapon system mounted on a ground vehicle. The High Energy Laser Technology Demonstrator (HEL TD) is intended to counter rockets, artillery, and mortars (counter-RAM) at the High Energy Laser Systems Test Facility (HELSTF) at White Sands Missile Range, N.M.

If deployed, HEL TD could support the transition to an Army acquisition program.

Northrop Grumman Space Technology won a one-year, $8 million contract, which could reach nearly $50 million over three years if options are exercised, from the Army Space and Missile Defense Command in Huntsville, Ala. Under the contract, Northrop Grumman is designing a ruggedized beam-control subsystem deployed on a tactical combat vehicle.

“We have built and tested a counter-RAM laser beam control system and integrated it with a command-and-control system to detect, track, and destroy incoming threats in flight,” Dan Wildt, director of Northrop Grumman’s Directed Energy Systems, says. These accomplishments include hand-off from an acquisition radar, passive and active tracking of targets, aim-point maintenance, and predictive avoidance.

The HEL TD team led by Northrop Grumman consists of BAE Systems, Ball Aerospace & Technologies, and L-3 Communications Brashears. Northrop Grumman will provide systems engineering, system integration, the beam control subsystem, the power subsystem, the thermal subsystem, and C3I. BAE Systems will provide the vehicle and platform integration; Ball Aerospace & Technologies Corp. will supply beam alignment and stabilization systems; and L-3 Communications Brashears will supply the beam director.

Northrop Grumman Corp. officials also opened a specialized facility in Redondo Beach, Calif., exclusively for the system integration and production of high-energy laser systems for the military. The Directed Energy Production Facility is specifically designed for the production of high-energy, solid-state lasers and their integration onto military vehicles.

The facility’s first project is to build and demonstrate the first 100-kilowatt solid-state laser sufficient for Phase 3 of the Joint High-Power Solid State Laser (JHPSSL) program.

High-energy liquid lasers

Officials at the Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., have contracted professionals at Textron Defense Systems, an operating unit of Textron Systems Corp. in Wilmington, Mass., to design the unit cell module for a 150-kilowatt laser weapon system (LWS) as part of the High Energy Liquid Laser Area Defense System (HELLADS) program.

The goal of HELLADS is to develop a high-energy laser weapon system, on the order of 150 kilowatts, that also is smaller and lighter than existing laser systems. With a weight goal of less than 11 pounds per kilowatt, HELLADS will enable high-energy lasers (HELs) to be integrated onto tactical aircraft. The compact system is intended to shoot down tactical targets, such as surface-to-air missiles and rockets, and to overcome the engagement-range limitations of larger, ground-based systems.

Based on the $1.45 million contract, Textron engineers are designing a unit cell laser module with integrated power and thermal management. It must be capable of 17 kilowatts of output power and meet DARPA’s aggressive weight, volume, beam quality, and runtime requirements for the LWS. Textron Defense Systems’ design is based upon the company’s ThinZag Ceramic solid-state laser technology. If the module proves successful, additional laser modules will be fabricated to produce a 150-kilowatt laser, which will be integrated with an existing beam-control solution to produce a laser weapon system demonstrator, Textron officials say.

“This DARPA initiative allows us to demonstrate compact, scalable, laser weapon system architectures based on ThinZag technology and accelerate the deployment of directed-energy weapons to the warfighter,” says Dr. John Boness, vice president, Applied Technology, Textron Defense Systems’ Advanced Solutions Center in Wilmington, Mass.

The HELLADS program also is funding the Aero Adaptive Beam Control program, designed to optimize the performance of high-energy lasers on tactical aircraft against targets in the aft field of regard. Current optical turret designs protrude, causing severe aero-optic distortions due to turbulence in the wake and unsteady shock movement over the aperture, reducing the effectiveness of directed-energy weapons. This program will examine flow-control strategies, explore the feasibility of a flow-control system synchronized with adaptive optics, and potentially culminate in wind-tunnel testing and the demonstration of an adaptive optics system and flight test turret.

Military & Aerospace Photos

Most Popular Articles

Related Products


F-SIM-LDR ARINC 615A Data Loader

AIT's F-SIM-LDR, or Flight Simulyzer Loader, is a complete ARINC-615A Data Loader development kit...

AceXtreme® Bridge Device - Smart Protocol Converter

DDC’s AceXtreme Bridge Device converts avionics messages in real time between Ethernet, MIL-STD-1...

Low Voltage Power Supplies for Avionics

Crane Aerospace & Electronics has over 50 years of experience in the design and manufacture of hi...

Transformer Rectifier Units (TRUs)

As the world’s leading supplier of Transformer Rectifier Units (TRUs) for commercial aircraft sin...


The RAR-USB is an ARINC 429 USB 2.0 adaptor that provides up to sixteen totally independent recei...

DW 251

DW 251 has been developed for specific use in aerospace and aircraft electrical and wiring applic...

Aircraft gearboxes

Positronic's Front Runner Connectors

The Front Runner Series offers a multiplicity of connector features which makes it a first choice...

ANET1553 / ANET429 Ethernet modules

New Ethernet Avionics Databus solutions for MIL-STD-1553A/B and ARINC429 are available. Test & Si...

Related Companies

CES - Creative Electronic Systems SA

Has been designing and manufacturing complex high-performance avionics, defense and communication boards, subsystems ...

Boker's Inc

Boker's, Inc. can manufacture your flat washers, spacers and shims with an outside diameter from 0.080" to 12" and ma...

DLS Electronic Systems Inc

Provides EMC/EMI & Environmental testing to MIL-STD 461-A-F, MIL-STD 810 & RTCA DO-160-C-G, Boeing, Airbus FAA AC20-1...


Highly innovative, integrated time-critical solutions of an information mission management and command and control sy...

Digital Systems Engineering Inc (DSE)

Harsh-duty ruggedized flat-panel display design and manufacturing for airborne, military, and marine surveillance app...

Speel Praha Ltd

Offers avionics systems, including aircraft monitoring systems, crash-protected solid-state flight data/cockpit voice...


Designs and manufactures ruggedized printers and Ethernet switches used in demanding military and defense application...

Tata Technologies Ltd

Combines a global network of innovation experts, program managers and highly skilled engineers for aircraft engineeri...


Provides LED push button display switches and control solutions, subsystems, and rugged keyboards and keypads for com...


Supplies high-density, high-reliability Interpoint microelectronics, DC/DC converters and EMI filters to the aerospac...
Wire News provided by   

Press Releases

Low Viscosity, One Part Cyanoacrylate Is Non-Toxic and Meets ISO 10993-5 Specifications

Master Bond MB250NT is widely used for a variety of applications ranging from repair to high speed producti...

Thermally Conductive, Two Component Epoxy Passes USP Class VI Tests and ISO 10993-5 Specifications

With biocompatibility and cytotoxicity certifications, Master Bond EP21AOLV-2Med is often selected for bond...

One Component, Snap Cure Epoxy Features High Strength Properties

Suitable for a variety of applications in the electronic, aerospace and OEM industries, Master Bond EP3SP5F...

One Part Epoxy Resists up to 500°F and Meets NASA Low Outgassing Specifications

Master Bond Supreme 12AOHT-LO is a one component epoxy for a variety of bonding and sealing applications in...

VICTORY Shared Processing, Fire Control Computer, and Switch for Ground Vehicles Introduced by Curtiss-Wright

Curtiss-Wright Corporation today announced that its Defense Solutions division has introduced a new fully i...


Curtiss-Wright Corporation’s Defense Solutions division applauds Northrop Grumman Corporation (NYSE: NOC) o...

Curtiss-Wright’s New Rugged Mobile IP Router Subsystem Features an Integrated Cisco® 5915 ESR Router

Curtiss-Wright Corporation today announced that its Defense Solutions division, a Cisco® Systems Solution T...

GE Announces First Sub-Credit Card-Sized Multi-Function High Definition (HD) Video Tracker

HUNTSVILLE, AL.— OCTOBER 13, 2014—GE’s Intelligent Platforms business today announced at AUSA (October 13-...


Meeting the Gen3 backplane challenge with OpenVPX and COTS

Tight Pentagon budgets mean military systems must stay in the field for longer than ever before. This doesn't mean obsolete technology, however. Today's military electronics are being upgraded constantly, an...
Sponsored by:

Design Strategy Considerations for DO-178C Certified Multi-core Systems

Join Wind River to learn how system architecture and design choices can minimize your DO-178C certification challenges.

Sponsored by:

Flying, Sailing or Driving - The Rugged, Embedded Intel-based Server that goes where you need it!Flying Sailing or Driving

Leveraging the power of server-class processors is no longer relegated to the confines of data centers. Through several innovations, Mercury Systems has ruggedized Intel’s server-class chips for deployment. ...
Sponsored by:

All Access Sponsors

Mil & Aero Magazine

April 2015
Volume 26, Issue 4

Download Our Apps




Follow Us On...


Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles