Simulated Scenarios

Commercial off-the-shelf technology and rich data combine to deliver high-fidelity flight training and simulation systems.

BY Courtney E. Howard

Increasing the military's Aviation Training and Readiness (T&R) is a growing priority for the U.S. Department of Defense (DOD). Military organizations are turning to industry for innovative electronic flight training and simulation solutions with which to hone soldiers' core skills and capabilities.

The face of combat–including military tactics, weaponry, and scenarios–changes as battlefield environments become more and more complex, and so, too, do the simulation and training systems devised to increase military preparedness.

"Scenarios are entirely different today," explains Frank Delisle, vice president of engineering and technology at L-3 Link Simulation & Training in Arlington, Texas. "It's not your traditional military scenario with a tank down the road. Given the urban nature of the conflicts now, soldiers are running into civilian areas with lots of cars and people, and the bad guys are in there somewhere. All that now has to be represented in training scenarios, and you need high definition and rich content to make that happen. You now have to create [simulation and training] environments that are very confusing–city environments populated with hundreds or thousands of entities."

L-3 Link Simulation & Training engineers are building a large-scale, high-definition visual system, for the F-16 Mission Training Center program, to be used in military flight simulation.

The DOD, dedicated to advancing military training, is investing in putting the latest and greatest flight training and simulation tools in soldier's hands, in classrooms and in theater, which is accelerating technology and acquisition cycles. "The government is really moving very quickly now to get new capabilities into [simulation and training] systems," Delisle says.

Army advancements

Officials at the U.S. Army Modeling and Simulation Office (AMSO) in Washington have taken a page from the DOD's handbook and have contracted Alion Science and Technology in McLean, Va., to support the office's oversight role for managing modeling and simulation processes throughout the Army.

DRS Technologies' P5 pods are employed for military training and simulation tasks aboard F-15 aircraft.

The AMSO coordinates, integrates, and synchronizes strategic modeling and simulation efforts across the Army to ensure unity of effort and purpose, says a representative. Office personnel also develop and implement a unified strategy to equip the Army with modeling and simulation capabilities in support of operating and generating force functions.

Under a $3.6 million contract, Alion professionals will assist in the AMSO and the Modeling and Simulation Proponent Office's mission to train and supply qualified modeling and simulation professionals to the Army, recruit and manage the modeling and simulation community to best meet the Army's warfighting needs, conduct research and analyze technical requirements, and produce a trained Army modeling and simulation community.

"With the Army's increasing focus on using modeling and simulation for decision support, mission planning, training, and more, it's essential that they have the tools and capability to effectively introduce and manage relevant processes," says Timer Keenan, Alion senior vice president and manager of the Strategic Operations Group. "Alion's support of modeling and simulation integration will help move AMSO closer to its goals of extending modeling and simulation resources throughout the Army."

Networked training

Army officials also have invested in the first full-motion, high-fidelity simulators to support UH-60M aircrew training. L-3 Link Simulation & Training (L-3 Link) will provide three UH-60M operational flight trainers (OFTs) in support of training services for the U.S. Army's Flight School XXI program, based on a contract modification from Computer Sciences Corp. in Falls Church, Va.

The first UH-60M OFT, to be installed at Flight School XXI's Warrior Hall, is expected to enter accreditation testing and achieve ready-for-training status in the fourth quarter of 2012. To date, L-3 Link has delivered or is in the process of delivering 35 training devices to Flight School XXI.

"When these simulation services are provided to Flight School XXI, they will be provided with the highest-fidelity UH-60M Operational Flight Trainers in the world," says Bob Birmingham, president of L-3 Link. "UH-60M Operational Flight Trainers will enable aircrews to gain aircraft-equivalent training for all modes of flight, developing the skills they will need to successfully undertake sling load, shipboard, and troop movement operations."

The UH-60M OFTs will support networked training exercises, present various threat environments, and enable aircrews to undertake night-vision goggle training. The UH-60M high-fidelity cockpit moves on a six degree-of-freedom electric motion system, whereas a supplemental motion system simulates vibration associated with helicopter flight.

UH-60M aircrews can view out-the-window, computer-generated imagery through wide field-of-view and chin window visual displays. Its high-fidelity software simulates the UH-60M's engine, electrical, hydraulic, navigation, and communication systems, as well as aircraft survivability equipment. A physics-based blade element model, electrically driven servo flight control system, and cyclic and collective controls that replicate UH-60M cockpit control also contribute to the high-fidelity training environment.

Next-gen fighters

"Fifth-generation fighters require a high-density threat environment and increased simulation fidelity to truly challenge a pilot's ability to implement the full capability of aircraft systems," explains Todd Kortbein, vice president of business development for range systems at DRS Training and Control Systems in Fort Walton Beach, Fla.

An F/A-18F Tactical Operational Flight Trainer from L-3 Link is integrated with the company's SimuSphere visual display.

Military and aerospace customers are requesting a combination of live training and "constructive" and "virtual" simulation, Kortbein says. "Constructive simulation allows combat pilots to fly and fight against targets [airborne and ground] that appear real on aircraft seekers and sensors, but in reality are provided by onboard simulations that stimulate appropriate sensors and HUD/cockpit symbology for the pilots to maneuver, fire, and train against." This simulation and training method increases efficiency by providing more intercepts per mission and reduces fuel consumed per combat training mission, he says.

"In this environment, adversary aircraft are replicated and displayed purely via simulations, giving the warfighter an extremely cost-effective way to train," Kortbein continues. The same virtual simulation technology can be employed in advanced trainer aircraft using multifunction displays; training aircraft don't require real sensors [e.g., real radars] to perform mission training, thereby saving acquisition costs. "Virtual simulation," he explains, "enables real aircraft to fly against pilots that are training in ground-based flight simulators via a data link/ground network. This method enables the pilot in the flight simulator to experience increased training fidelity because he/she is flying against a real maneuvering aircraft."

Predator Mission Aircrew Training Systems (PMATS) have been integrated with L-3 Link's HD World technologies to enhance realism within urban areas. Here, a pilot and sensor operator man a PMATS ground control station simulator.

The global positioning system (GPS) enables training anywhere in the world at any time, which leads to the name "rangeless training," Kortbein adds. Advanced airborne processors and digital simulations deliver a high-fidelity simulation performance that closely replicates actual weapon performance. Additionally, 100 players or more can train simultaneously in the same mission without the risk of compromising mission tactics to hostile forces, thanks to advanced data link networks and improved security features.

Mil-aero customers are requesting encryption and multiple levels of security (MLS), Kortbein reveals. "Low observable platform technology performance, for example, cannot be easily obtained and analyzed by hostile forces when mission data is encrypted. MLS allows forces to train with friendly/coalition forces without providing 100 percent of their mission parameters to those same forces while they train together (certain parameters can be filtered/withheld from these forces). In this way, combat air forces of the world can train with allies, but not sacrifice all their tactics/weapon capabilities to their allies."

Live air combat training

DRS air combat training systems are designed to bring live-virtual-constructive technology to virtually all types of aircraft by using current and future training instrumentation data links and processors, including advanced modeling of weapon countermeasures (e.g., chaff, flare, and ECM/ECCM) and enhanced modeling of atmospheric effects associated with weapon simulations. In fact, DRS provides the latest generation of live air combat training instrumentation solutions for U.S. fighter aircraft, and to qualified U.S. allies and coalition partners. DRS Air Combat Training Systems can be carried as an external store in several air-to-air missile form factors or internally to the aircraft as an avionics box.

"Today's flight training and simulation technologies allow aircrews to experience first-hand the fog of war, in a controlled training environment, and provide them a venue to sort through myriad combat-related challenges that a routine training environment can't, nor will ever, sufficiently replicate," Kortbein continues. "This type of augmented training has been shown to cultivate superior kill ratios for those pilots well-versed in this technology, resulting in lives saved and reduced aircraft losses. These technologies are also a force multiplier by allowing pilots to get the most out of their aircraft and associated weapon systems via repetition and fine tuning not possible without these systems.

"As portrayed in the movie Top Gun, our training instrumentation provides a simulated weapon engagement environment allowing pilots to employ weapons, and 'kill or be killed' in the simulated haze of combat," Kortbein says. "Our instrumentation allows real aircraft, with real pilots to fly exactly as they would in real combat. The only difference is, instead of real weapons, weapon simulations are used to simulate the outcome of combat."

DRS air combat training systems capture the data for display, enabling pilots to analyze their performance–what they did right, what they did wrong, and how they could have done things better–after the mission has been completed. Post-mission critiques can now be compiled and presented in as little time as one hour after landing–something that used to take many hours or even days. "It allows pilots to get better training with less hours spent in mission debrief and more hours spent with their families," Kortbein describes. "It's a quality-of-life issue for combat pilots."

Tactical combat training

DRS Training and Control Systems (DRS TCS), a business unit of DRS Defense Solutions in Bethesda, Md., delivers airborne pods for the P5 Combat Training System/Tactical Combat Training System (P5CTS/TCTS). The P5 Combat Training System (CTS), as it is called by the U.S. Air Force, or the Tactical Combat Training System (TCTS), as it is called by the U.S. Navy (USN), is intended to provide the latest air combat training technology to the Air Force, Navy (including the Marine Corps), and international air forces via foreign military sales.

The P5CTS/TCTS contract was awarded in 2003 by the Range Instrumentation Systems Branch of the Test and Training Division at Eglin Air Force Base, Fla., to Cubic Defense Applications of San Diego as the prime contractor. DRS TCS, the principal subcontractor to Cubic for the airborne instrumentation, has received orders for P5 pods with deliveries scheduled through 2012.

"The P5 pod represents the fifth generation of airborne combat training systems and requires state-of-the-art engineering, manufacturing, testing, and depot-level maintenance capabilities to support the rigorous training needs of U.S. and coalition aircrews around the world," says Robbie Epstein, DRS TCS president. "DRS TCS has dedicated significant resources to the program. This includes modern production and depot repair areas, and sophisticated environmental test equipment to assure the system can operate and survive in the harsh, demanding environment of modern air combat training."

The P5 CTS/TCTS enables combat pilots to train as they fight, allowing the aircraft to fly, maneuver, engage, and strike at ground and air targets with a variety of simulated weapons and providing immediate feedback to the pilot in flight. The P5 pod is mounted to any AIM-9 or AMRAAM [missile] launch rail and provides continuous tracking of all P5 equipped participants throughout a training mission, advanced security features, no drop weapons scoring, and real-time air-to-air "kill" notifications, says a company representative. The pod also records flight and aircrew performance data for review during flight debriefs and sports live monitoring features to allow real-time feedback, direction, and instruction from ground-based observers or instructors.

Realism in the absence of aircraft

Live training and mission rehearsal exercises, though beneficial to warfighter readiness, can be expensive and even cost-prohibitive in the presence of a downturned economy and growing budgetary restrictions. The DOD and military organizations continue to invest in and modernize traditional training institutions and the electronic training and simulation systems employed therein.

The mil-aero customer's focus is on how to improve simulation devices' training and readiness capability continuously. The answer: commercial off-the-shelf (COTS) technology. "We have taken a lot of the advancements in computer graphics and gaming technologies and leveraged that to provide rich content," L-3 Link's Delisle says.

Mil-aero training and simulation systems, through COTS, are now able to harness technology from the gaming world, which advances at a rapid pace. Warfighters, critical of low-tech simulations, have been anxiously awaiting just such a milestone. "The adoption of that technology into the military was slower than it needed to be," Delisle explains. "Soldiers were frustrated: They would play on an Xbox at home, then go into a training school and get 'dumbed' down to a simulator that doesn't look real." New COTS acquisition strategies and innovative technology firms are changing all that.

The emphasis on training and readiness in the acquisition world over the past few years has enabled industry to be "a lot more proactive in bringing technologies to the problem, opposed to the acquisition process trying to dictate the technology," Delisle says. "They want to leverage commercial technology; industry now can be a lot more aggressive providing solutions so the war-fighter can get closer to what he can get on his gaming console. Gaming is not the same level of simulation you have to have for mil-aero, but the underlying technologies still provide us the framework to use. The gaming world doesn't care about reality in the behaviors of the systems. We always have to make sure we represent the simulations and sensor capabilities with physics-based reality or pilots will get killed; they will think their systems are better than they are in the real world." Furthermore, in a flight simulator, the content has to be processed in real time, such that there is no lag or latency from the pilot's actions and maneuvers to when he would see the results, he says.

Enhanced experiences

Mil-aero customers and end users want more from their flight training and simulation system–more content, more capabilities, and more resolution–and they want it for less money and in a smaller size. Certainly, customers in the mil-aero community are not unique in this regard. Technology firms, such as L-3 Link, are working toward adding all of the richness of high-definition content, enhanced capabilities, and a wide array of complex training scenarios in simulators, says Delisle. Systems also need to "handle higher-fidelity sensors, including high-resolution infrared, electro-optical systems, night-vision goggles, and high-resolution radars," he says. "All have to be connected and play together to create an immersive training environment. In short, the big focus of the solutions and the technology is to take as much of the training of the real aircraft in the training simulation systems.

"Our customers have been stepping up the tempo of trying to get more and more capabilities in the solution," Delisle adds. "We have been continuing to implement high-definition, high-fidelity technology in the trainers that can support the military's training and readiness objectives." In fact, a new F-16 Mission Training Center (MTC) contract stemmed from the U.S. government officials' desire to acquire the latest and greatest; the requirements were for the highest definition and greatest capabilities that were available.

L-3 Link won a $21 million contract option from the Air Force Aeronautical Systems Center's Training Systems Product Group at Wright Patterson Air Force Base, Ohio, to build a third F-16 MTC suite. According to the contract option, which brings the total contract value on the program to $132.8 million, L-3 Link engineers will build and deliver an F-16 MTC suite that includes four high-definition simulators.

Each of the F-16 MTC suites is being integrated with L-3 Link's HD World simulation product line, which combines high-definition databases, image generation systems, physics-based processing technology, and visual system displays to create highly realistic and relevant environments for F-16 pilot training.

SimuSphere HD, the visual display component to HD World, provides users an immersive, high-
definition, 360-degree field-of-view. High-definition technology provides pilots the visual acuity to detect, orient, and recognize targets as they do in the real world, Delisle explains. "We have to feed these displays with richer and richer content: what you would see in urban or rich terrain environments; all the details and all the fidelity of the buildings and vehicles; and crowd behaviors. You need all that rich content, together with enabling technology; it is really where the solutions are focused today. Previous technologies (displays and CG systems) didn't have the processing capacity or the resolution to be able to do real-world detection and orientation of targets and be able to create that kind of fidelity."

Quantum3D's high-performance image generators are employed in a range of flight simulation and training initiatives that demand a highly realistic visual environment.

"For the first time ever in a simulator, F-16 pilots will be able to detect, judge the orientation of, recognize, and identify targets from the same distance as when flying an actual mission," Bob Birmingham, president of L-3 Link, describes. "This advanced simulation capability will maximize pilot operational readiness, while reducing training costs for the U.S. Air Force."

Under the program, the U.S. Air Force could order as many as 20 F-16 MTCs for installations in the U.S., Europe, and Pacific region. High-
fidelity F-16 MTC simulators will model the fighter aircraft's weapon systems and ordnance, and will support basic and advanced pilot mission training, tactics validation, and mission rehearsal.

"It's a beyond-the-state-of-the-art flight simulation trainer in many ways," Delisle notes. "The F-16 MTC sets a new standard for high fidelity." The premier flight training system delivers high-definition, high-resolution, high-fidelity training capability, he says. The company's HD World content is also being used to upgrade F-18 trainers.

Helicopter avionics

Realism is of the utmost importance to the pilot in training; realistic simulations immerse pilots in training scenarios and lend to greater effectiveness. Like L-3 Link with its high-definition displays and rich content, Quantum3D in San Jose, Calif., is in the business of creating realistic visual environments that immerse military pilots into any virtual scenario.

"The military uses Quantum3D's high-performance image generators for a range of flight simulation and training initiatives that demand a highly realistic visual environment, including initial and recurring flight training, evaluating cockpit designs, testing new aircraft characteristics and handling qualities, and other engineering simulation applications," says Pratish Shah, director of marketing at Quantum3D.

Advances in shader technologies enable Quantum3D engineers to add more realism to scenes providing pilots and trainees a more realistic virtual world. "With shader technologies, we can integrate more realistic-looking environmental elements–clouds, oceans, and other effects–creating a virtual learning environment that looks and feels real," Shah says. "This can have a substantial impact on the overall training experience. In addition, GPUs and CPUs are improving, along with processing and graphics. All these factors contribute to the ability to create future virtual worlds that will simply not look any different than the real world. Whether it's the visual or the physics of the world, faster hardware simply starts blurring the line between the virtual and the real world."

Bell Helicopter Textron Inc. in Fort Worth, Texas, has implemented a Quantum3D IDX 6000 image generator for avionics simulation and training; additionally, Embraer uses the IDX image generator for the Ecuador air force Super Tucano training program.

Bell Helicopter selected the new IDX 6000 image generator to replace two of its existing image generators and display systems for avionics evaluation and training. The visual system is employed in a light-tight environment, and the display system stimulates pilots' operational night-vision goggles, a technology that is increasingly common in Bell's civil aviation market, says a company representative.

Quantum3D will be presenting its IDX 7000 high-performance, high-quality image generator for simulation and training at the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) in Orlando, Fla. The IDX 7000 is designed to offer greater performance and capabilities in a footprint roughly half the size of a current-generation image generator. "Smaller size and higher performance will give the military a very capable simulation and training platform that can be set up in a dedicated room and easily transported to locations worldwide," Shah explains.

High-fidelity future

"The future is exciting," Shank predicts. He is seeing more joint forces training: "not just pilots training by themselves, but rather coordinating training across pilots, ground warriors, and other ground-, air-, and maritime-based vehicles, across multiple disciplines. In the future, coordinating simulation training exercises in virtual environments will be possible with simulation platforms.

"In addition, simulation and training has traditionally been confined to dedicated rooms that require installed equipment. Today, the military wants to train and rehearse for missions remotely, near the area of engagement," Shah explains. "Newer simulation and training equipment must be easy to set up, and portable to send to any location worldwide."

Quantum3D has designed its ExpeditionDI simulator to be easily transported and set up in an hour for ground warrior training. The company is also investing in making mission rehearsal a reality, whereby military pilots, tank commanders, and ground troops rehearse for specific missions. It involves joint training and simulation, on-the-fly database (satellite imagery and 3D content) generation, and portable equipment where pilots and warriors can train in the field.

L-3 Link has delivered 23 Aviation Combined Arms Tactical Trainer (AVCATT ) suites to the U.S. Army and Army National Guard. Each suite consists of two 53-foot trailers populated by six reconfigurable manned modules (which can be reconfigured to represent any combination of AH-64D, AH-64A, OH-58D, UH-60A/L, and CH-47D platforms), a Battle Master Control Room, and After Action Review theater.

Light detection and ranging (LIDAR) is perfect for rapid database generation, says Shah. "Quantum3D has invested heavily in algorithms, applications, hardware, and system technologies that would allow the military to take LIDAR source data and convert it on-the-fly into a simulation database. This has the possibility to allow pilots and ground warriors to train using visuals that were captured not days or weeks ago, but hours earlier. With on-the-fly database generation, our military pilots and ground warriors can rehearse with the latest data to help increase their chances for success."

"If you look at today's computational and display systems, we are getting new capability every six months–that's how fast the turn is. Companion with that the ability to tap into the tools that come out of the commercial gaming industry, which continues to produce more and more content: highly realistic models of vehicles and people, facial expressions, behaviors, and crowds," Delisle says. "Continuing to tap into the commercial world is a big benefit." L-3 Link, he describes, can pipe realistic models and actual satellite information of specific areas of the world into training and simulation systems.

"It's not synthetic anymore, it's time-stamped, satellite information," Delisle says of today's mil-aero simulations. "We are not training in synthetic worlds, but the real world as it stood at a certain time, so you get very accurate mission rehearsal.

We're seeing the overlap between live operations and training environments; they are almost overlapping domains. Data we're using for training and what [soldiers] are seeing and experiencing in the live operation are almost one in the same."

The boundaries between real and virtual are starting to blur, and it is causing a paradigm shift in aviation training and readiness.

More Military & Aerospace Electronics Current Issue Articles
More Military & Aerospace Electronics Archives Issue Articles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

Custom and OEM Camera Design

We provide custom designs for both modifications to existing systems and development of new produ...

Nano-D BiLobe® Connectors -(COTS)

Sizes are 9, 15, 21, 25, 31, 37 , 51 & 65 pin, at .025 Mil. Pitch(Currently Available), mating pi...

Latching Micro-D Connectors

Omnetics high reliability Micro-D connectors are available with Quick Latch System. For applicati...

Micro-D Connectors

Highly rugged and compact designs in shell styles from 9 to 51 contacts. The Micro-D connectors i...

Omnetics Nano-D Bi-Lobe® Latching Connectors

Bi-Lobe® connectors utilize rugged and reliable flex pin contact system. Spaced on 25 mil (.64mm)...

Hybrid Micro-D Connectors

Omnetics high reliability Micro-D connectors are available withmixed power/signal contact layouts...

Nano-D Bi-Lobes® Connectors Dual Row Horizontal SMT (Type AA)

Horizontal SMT Bi-Lobe® nanos offer an extremely low profile package that is well suited to pick ...

XTend7103 | COM Express® Carrier for COM Express® Type 10 Mezzanine Modules

The XTend7103 is a COM Express® carrier card designed to provide a low-cost and compact platform ...

XPedite7575 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 3U VPX-REDI Module

The XPedite7575 is a high-performance, 3U VPX-REDI, single board computer based on the 5th genera...

XPort6173 | 3U VPX Carrier for Two 2.5 in. Solid-State Drives (SSDs)

The XPort6173 supports two, standard, 2.5 in. Solid-State Drives (SSDs) in a single 0.8 in. or 1....

Related Companies

Interface Displays & Controls Inc

Certified ISO-9001/AS9100, veteran-owned, small business. Interface specializes in designing, reverse-engineering and...

Southwest Antennas

Designs and manufactures high-performance RF and Microwave antennas and accessories designed for today’s communicatio...

Curtiss-Wright Defense Solutions

About Curtiss-Wright Defense Solutions Curtiss-Wright Defense Solutions (CWDS) is a long established techno...

Omnetics Connector Corp

Omnetics Connector Corporation – Micro and Nano Connectors and Interconnect Systems for Military & Aerospa...

United Electronic Industries Inc

UEI is a leader in the PC/Ethernet data acquisition and control, Data Logger/Recorder and Programmable Automation Con...

GE Aviation Systems

Designs and manufactures high reliability microelectronics for aerospace and military applications. Thick film hybrid...

Cobham AvComm (formerly Aeroflex Test Solutions)

Is a global leader in avionics, communications, and synthetic test, monitoring, and control for commercial, governmen...

Astronics Ballard Technology

Manufactures avionics databus interfaces, embedded computers, and software for aerospace, military and commercial use...

Fabritech Inc

Fabritech was established in 1986 and specializes in the fabrication of EMI, RFI, and thermal shielded products made ...

KAMAKA Electronic Bauelemente Vertriebs GmbH

One of the leading Hi-Rel suppliers in Central Europe for more than 23 years. The quality of our products and the tec...


Harsh Environment Protection for Advanced Electronics and Components

This webinar will offer an opportunity to learn more about ultra-thin Parylene conformal coatings – how they are applied, applications they protect today, and the properties and benefits they offer, includin...

New Design Tools That Help You Develop Radar That Sees the Un-seeable and Detects the Undetectable

Xilinx EW/ISR System Architect, Luke Miller, has new tricks and he’s going to tell you all about them in a new Xilinx Webinar—for free. His Webinar will cover new ways to implement Radar functions including ...
Sponsored by:

Press Releases


Curtiss-Wright Corporation today announced that its Defense Solutions division has received a contract from Sierra Nevada Corporation (SNC) to supply its small form factor ...

Innovative Integration Announces the FMC-Servo

Camarillo, CA June 19, 2015, Innovative Integration, a trusted supplier of signal processing and data acquisition hardware and software solutions, today announced the FMC-S...


Curtiss-Wright Corporation today announced that its Defense Solutions division has further enhanced its innovative VRD1 high definition (HD) video management system (VMS) w...

All Access Sponsors

Mil & Aero Magazine

August 2015
Volume 26, Issue 8

Download Our Apps




Follow Us On...


Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles