High-performance computing: It's got to be rugged

BY Simon Collins

Courtney Howard’s article in the July 2011 print issue of Military & Aerospace Electronics entitled “Harnessing high-performance computing” was further proof that, for developers of embedded systems for military and aerospace applications, high-performance computing (HPC) is a hot topic. That’s no surprise: Military and aerospace applications have long been voracious devourers of as much computing capability as they can find.

HPC in the commercial world is already well established, and its purveyors are learning to extract maximum advantage from many-core and multicore processors, as well as multiprocessor blades in application environments where a high degree of potential parallelism exists. The very highest performance computers in the world use clusters of thousands of the latest multicore CPUs (central processing units) from Intel along with thousands of Nvidia’s many-core GPUs (graphics processing units), often tightly coupled via InfiniBand and 10 Gigabit Ethernet remote DMA-enabled (RDMA) switched fabric networks with robust, high-performance driver support under Linux and Windows operating systems.

Commercial interest and appli- cation is also driving the development of an extensive infrastructure and ecosystem of supporting hardware, software, and middleware, reducing the need to develop complex, expensive proprietary solutions and further enhancing the attraction of HPC.

For military and aerospace developers, it’s all good news. Not only is the massive investment in HPC in the commercial world driving technology and performance developments at a spectacular rate (an example is the work being done by Nvidia and Mellanox on “GPU Direct,” a development that will greatly improve GPGPU, or general-purpose GPU, performance), but also it is doing so using the COTS (commercial off-the-shelf) principles that have become fundamental to embedded computing in military applications. The military and aerospace world is taking advantage of those developments.

Attracting substantial attention is GPGPU technology—applying the inherent massively parallel architecture of graphics processors to general-purpose computing tasks. GE was among the first to bring commercial, rugged GPGPU-enabled solutions to the market with the announcement in November 2009 of the GRA111 high-performance graphics board, following the signing of a unique, strategic agreement with Nvidia, the market leader in GPU technology, two months previous. The agreement gives GE not only direct access to silicon, but also the knowledge necessary to implement it appropriately for military and aerospace applications, as well as insight into Nvidia’s roadmap.

While commercial applications and military and aerospace applications have the same hunger for processing performance, their requirements are divergent when it comes to deployment. There is, of course, a world of difference between an air-conditioned data center and a military land vehicle when it comes to power consumption, heat dissipation, resistance to shock, vibration, and extremes of temperature, and so on. And when it comes to GPU technology, there is a similar world of difference between what a GT240 can be subjected to in a laptop and what it can be subjected to in an unmanned aerial vehicle.

In a laptop, the GPU will typically be configured via an MXM (Mobile PCI Express Module). This is akin to what a military and aerospace systems designer would probably think of as a PMC or XMC: a discrete printed circuit board—containing some specific functionality—that is mounted on a host board, rather than the functionality being integrated directly on the host board itself. In the case of laptops, the rationale for this approach is simple to understand: it allows manufacturers to implement alternative GPUs, or new generations of a GPU, without having to redesign the host board.

That’s not an approach, though, that lends itself to the rigors of military computing. It may work well in benign environments—and, in fact, later this year, GE will announce GPU-enabled products aimed at benign environment deployment and using the MXM architecture—but it is somewhat unsuitable for rugged systems given that it is designed for less challenging applications. It is in this area that GE’s relationship with Nvidia has proved especially beneficial: Access to in-depth Nvidia expertise has allowed GPU silicon to be implemented on, and integrated within, fully rugged computing platforms designed for deployment in the most demanding environments, conforming to the design, procurement, manufacturing, and qualification process standards required by military and aerospace customers, such as AS9100, IPC 610 Class 3, MIL-STD-810, and so on.

But “rugged” is not just about resistance to shock, vibration, extremes of temperature, and so on. A key area in which military and aerospace customers differ from their commercial counterparts is that performance per watt, not absolute performance, matters most—because, in an often physically-constrained environment, heat dissipation is difficult to achieve, yet absolutely vital if reliability in a mission-critical environment is to be guaranteed.

The maximum performance of the system is governed by the ability to remove heat from the processing units. That set of constraints has given rise to the notion of a solution’s SWaP (size, weight, and power) characteristics—its size, weight and power. Designing the most power-hungry silicon down onto the host board provides the best possible opportunity to design heat management systems to remove the heat most effectively, and keep the processors crunching numbers at maximum performance, thus optimizing SWaP for any given sub-system.

GPGPU technology is already being evaluated and fielded by a large number of military and aerospace programs—and with, for example, one radar application showing a performance increase of 15x compared with more traditional approaches, that’s not surprising. However, in an emerging market, it is important to realize that not all GPGPU platforms targeted at the military and aerospace market are created equal—and that not all claims to be “first” are 100 percent accurate.

In the excitement about the technology, it’s also important that program managers apply the same kind of selection criteria as they would for any other prospective solution, such as determining the nature of the extended product roadmap and the availability of long-term programs to support multi-year—perhaps multi-decade—deployments. As GPGPU technology enters the military and aerospace mainstream—as it surely will—those considerations will, inevitably, become second nature.

Simon Collins is product manager at GE Intelligent Platforms based in Charlottesville, Va.

More Military & Aerospace Electronics Current Issue Articles
More Military & Aerospace Electronics Archives Issue Articles

Military & Aerospace Photos

Most Popular Articles

Related Products

CHAMP-FX4 6U OpenVPX Virtex-7 FPGA Processor Card

The CHAMP-FX4 is the flagship 6U product in Curtiss-Wright Defense Solutions’ family of user-prog...

PMC-E2001 Audio/Acoustic Waveform Generating PMC Card

PMC-E2001 Delta-sigma PMC features 16-bit resolution with 8 Analog Outputs and 4 Analog Inputs wi...

VPX3-453 3U VPX Virtex-6/8640D Digital Signal Processor

The Curtiss-Wright VPX3-453 is a high performance 3U VPX DSP and FPGA processor card that combine...

SBC-K7 Embedded PC for Instrumentation and Control

The SBC-K7 is an ideal platform for embedded instrumentation that combines an Atom PC running Win...

CPU-PPC460EX-VME Processor Board

The CPU-PPC460EX-VME PowerPC processor board is designed for rugged, conduction and convection co...

PC/104 SBC and Peripherals

Kontron PC/104 Standalone Single Board Computers (SBCs) serve in every format, even with consiste...

General Micro "Horizon" C299

The C299 Horizon is a third generation, 6U cPCI SBC module based on GMS’ upgradable CPU technolog...

Rugged Mobile Communications Server

Advanced communications server designed to be deployed in environments where it needs to meet cer...

RR2P Removable Canister RAID System

Transportable data storage for mobile field use aboard planes, ships and ground transport. 2U, du...

API DC Link Power Film Capacitors

High reliability DC link capacitors for power inverter applications which require superior life e...

Related Companies

Curtiss-Wright Defense Solutions

About Curtiss-Wright Defense Solutions Curtiss-Wright Defense Solutions (CWDS) is a long established techno...

Innovative Integration

  Since 1988, Innovative Integration has grown to become one of the world's leading suppliers of DSP and data ac...

Beyond Electronics Corp

Beyond Electronics(BEC) provides Rugged COTS board and system level solutions in various small form factor products c...


Driving the world’s embedded computing platforms Kontron is a global leader in embedded computing technology.&n...

General Micro Systems Inc

Since 1979, General Micro Systems has been providing the most diverse line of single-board computers in the industry....

Elma Electronic Inc

Who we are...   About Elma Electronic Systems   The Systems division of Elma Electronic Inc. supplies the

Winchester Systems Inc

At its founding in 1981, Winchester Systems introduced its first 5 MB disk system for Intel development system users....

API Technologies Corp

Who We Are API Technologies is a dominant technology provider of RF/microwave, microelectronics, and security technol...

Extreme Engineering Solutions Inc (X-ES)

 Extreme Engineering Solutions, Inc. (X-ES) is a leader in the design, manufacture, and support of standard and ...

Falcon Electronics

Distributes military, hi-rel and space-grade semiconductors including ARINC 429/1553 databus products, power supplies...
Wire News provided by   

Press Releases

Low Viscosity, One Part Cyanoacrylate Is Non-Toxic and Meets ISO 10993-5 Specifications

Master Bond MB250NT is widely used for a variety of applications ranging from repair to high speed producti...

Thermally Conductive, Two Component Epoxy Passes USP Class VI Tests and ISO 10993-5 Specifications

With biocompatibility and cytotoxicity certifications, Master Bond EP21AOLV-2Med is often selected for bond...

One Component, Snap Cure Epoxy Features High Strength Properties

Suitable for a variety of applications in the electronic, aerospace and OEM industries, Master Bond EP3SP5F...

One Part Epoxy Resists up to 500°F and Meets NASA Low Outgassing Specifications

Master Bond Supreme 12AOHT-LO is a one component epoxy for a variety of bonding and sealing applications in...


Curtiss-Wright Corporation’s Defense Solutions division applauds Northrop Grumman Corporation (NYSE: NOC) o...

Curtiss-Wright’s New Rugged Mobile IP Router Subsystem Features an Integrated Cisco® 5915 ESR Router

Curtiss-Wright Corporation today announced that its Defense Solutions division, a Cisco® Systems Solution T...

VICTORY Shared Processing, Fire Control Computer, and Switch for Ground Vehicles Introduced by Curtiss-Wright

Curtiss-Wright Corporation today announced that its Defense Solutions division has introduced a new fully i...

GE Announces First Sub-Credit Card-Sized Multi-Function High Definition (HD) Video Tracker

HUNTSVILLE, AL.— OCTOBER 13, 2014—GE’s Intelligent Platforms business today announced at AUSA (October 13-...


Meeting the Gen3 backplane challenge with OpenVPX and COTS

Tight Pentagon budgets mean military systems must stay in the field for longer than ever before. This doesn't mean obsolete technology, however. Today's military electronics are being upgraded constantly, an...
Sponsored by:

Design Strategy Considerations for DO-178C Certified Multi-core Systems

Join Wind River to learn how system architecture and design choices can minimize your DO-178C certification challenges.

Sponsored by:

Flying, Sailing or Driving - The Rugged, Embedded Intel-based Server that goes where you need it!Flying Sailing or Driving

Leveraging the power of server-class processors is no longer relegated to the confines of data centers. Through several innovations, Mercury Systems has ruggedized Intel’s server-class chips for deployment. ...
Sponsored by:

All Access Sponsors

Mil & Aero Magazine

April 2015
Volume 26, Issue 4

Download Our Apps




Follow Us On...


Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles