The Migration path to MicroTCA

MicroTCA looks to VME, CompactPCI, and AdvancedTCA for potential converts to emerging small-form-factor standard.

BY Mark Lowdermilk

That MicroTCA packs a lot of punch in a small form factor is undeniable. The primary selling points for MicroTCA are impressive: an affordable next-generation computing architecture, high communications bandwidth, the latest multi-core processors, support for redundancy, and high availability—all in a small system footprint that is extremely scalable.

As with any emerging standard, however, adoption by its target markets is the ultimate measure of an architecture’s success.

In the case of MicroTCA, several markets stand squarely in its crosshairs: the telecommunications market with a focus on network and wireless communications equipment; test and measurement, including communications test and high-speed manufacturing inspection equipment; and the increasingly communication-centric military and aerospace market. Additional potential markets include medical imaging, industrial controls, and the physics research community.

Within these markets, propo- nents of MicroTCA are hoping to attract interest from CompactPCI and VME users looking for a next-generation architecture that can deliver the increased performance, scalability, and longevity these aging architectures lack, as well as AdvancedTCA adherents that are looking for a less expensive—yet still robust—feature set in a much smaller footprint.

OEMs that move to MicroTCA are going to do so because it is a next-generation architecture that delivers increased performance in a very small package. Although MicroTCA was introduced by the PCI Industrial Computer Manufacturers Group (PICMG) in 2006, there are already more than 50 companies worldwide offering Advanced Mezzanine Card (AMC) modules for the standard. This can be attributed to the fact that MicroTCA utilizes the same AMC cards as another PICMG effort—AdvancedTCA—which started in 2002.

MicroTCA is gaining traction quickly because it is an offshoot of AdvancedTCA; there is an overlap of the ecosystems in that regard and as a result, both architectures benefit.

The move from AdvancedTCA

Perhaps the most logical migration path to MicroTCA lies with AdvancedTCA users looking for a lower-cost solution and a smaller footprint.

The original intent of Advanced- TCA was to meet the requirements of the next generation of carrier-grade wired and wireless networking and telecommunications equipment, such as media gateways, video transcoders, and IPTV. As a result, AdvancedTCA was created to deliver massive processing and bandwidth with high availability and built-in redundancy.

However, it has also been unofficially dubbed “big iron” due to its overall size. For many applications, AdvancedTCA may be overkill and the final solution is usually quite large. For those that prefer AdvancedTCA’s features, but don’t want to invest in unnecessary functions and are looking for a smaller footprint, MicroTCA is a natural choice.

With communication bandwidth capabilities in the range from 40 gigabits per second to faster than 1 terabit per second, MicroTCA has more than enough bandwidth for most demanding applications.

Starting with a small two-blade chassis and scaling up to a maximum 12-blade solution, 2U MicroTCA processors blades (PrAMCs) can be networked together to deliver a tremendous amount of computing resources, particularly when each could be designed with the latest multi-core processors to further increase computing power. Additional system components include power modules, cooling units, and AMCs for everything from mass storage to high-end graphics cards.

Product applications for the MicroTCA architecture include wireless base stations, Wi-Fi/WiMAX radios, optical networks, and media servers, to name a few. OEM test and measurement equipment for network enterprise and wireless equipment is also well served by MicroTCA’s feature set.

MicroTCA also delivers the high reliability inherent in AdvancedTCA with availability up to five nines (0.999999). As with AdvancedTCA, redundancy and cooling configurations can be scaled for full, partial, or no redundancy, depending on the application’s requirements.

A next-generation platform for VME and CompactPCI

Although VME and CompactPCI are still viable for many applications, these architectures are struggling to meet the demanding bandwidth requirements of today’s increasingly communication-centric industrial and military applications.

As a result, many VME and CompactPCI users are looking for the next-generation platform that can deliver on both counts. MicroTCA has the added benefit of further decreasing the size of the final solution, with its 2U cards being smaller than VME and CompactPCI’s 3U and 6U offerings.

A lot of people that have been using VME and CompactPCI for a long time, pushing it along and keeping it going. Now they face the decision to go to a new architecture. MicroTCA would be a good option because of its size and increased performance.

Making the move to MicroTCA

To facilitate the move to MicroTCA, companies are going one step further to offer integrated solutions to help reduce the complexity, improve time to market, and reduce risk to OEM partners by delivering an application-specific solution that meets the customer’s exact needs.

Such application-ready solutions drastically reduce integration time and costs and eliminate the need for customers to work with several vendors and integrate the components into a complete system themselves.

Customers may be used to dealing with several vendors, particularly with VME, Compact PCI, and AdvancedTCA; yet, in this economy with few resources, less time, and the need to get to market quickly, OEMs are searching for technology experts to help them reduce costs and improve time to market.

The modular embedded computing marketplace, including MicroTCA, can be difficult to navigate. The final solution will be an application-specific solution that is assembled and pre-tested before it is delivered to the customer.

With an integrated solution, the customer can focus on higher levels of activity that bring more value. So there are savings in terms of direct cost, indirect costs, and a reduction in risk factors.

Mark Lowdermilk is president and chief executive officer of Embedded Planet in Cleveland. Visit the company online at

More Military & Aerospace Electronics Current Issue Articles
More Military & Aerospace Electronics Archives Issue Articles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

XPedite7574 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 3U VPX-REDI Module

The XPedite7574 is a high-performance, 3U VPX-REDI, single board computer based on the 5th genera...

XCalibur5090 | Dual Virtex-7 Based Digital Signal Processing 6U LRM FPGA with Quad 2500 MSPS DAC and 3200 MSPS ADC

The XCalibur5090 is a high-performance, reconfigurable, conduction-cooled 6U LRM module based on ...

XCalibur1645 | Freescale Eight-Core P4080 Processor-Based Conduction-Cooled 6U VPX Module

The XCalibur1645 is a high-performance, 6U VPX, single board computer supporting Freescale QorIQ ...

ScanFaker Radar Stimulation Board

The versatile ScanFaker Radar Display Stimulator Card can interface to virtually any radar displa...

PowerDNA-PPC5 Cube

5-layer, 100Base-T I/O, Data Acquisition and Control Cube with PowerPC CPU and SD slot. Has slots...


Dual Channel MIL-STD-1553 interface board for Cube I/O chassis with 2 independent, dual redundant...


Half-width 3U Gigabit Ethernet Data Acquisition and control chassis allows the installation of up...


Four-Slot, Military Style I/O Chassis with Military/Rugged 38999 connectivity, 100% COTS solution...

PCI Board PD2-AO-16/16

Is a 16-channel, 16-bit, 100 kS/s per channel PCI analog output board for PCI bus including 16 an...

PowerDNR-MIL Rack

12- slot, Military style I/O rack with Military/Rugged 38999 connectivity, 100% COTS solution, su...

Related Companies

LiquidCool Solutions

LiquidCool Solutions is a technology development firm with patents surrounding cooling electronics by total immersion...


Is a mechanical engineering consulting company headquartered in Los Angeles, CA with operations in Billerica, MA, pro...

Curtiss-Wright Defense Solutions

About Curtiss-Wright Defense Solutions Curtiss-Wright Defense Solutions (CWDS) is a long established techno...

Dspnor AS

Offers radar signal processing and distribution. The products interface to virtually any radar system in use today. T...

Southwest Antennas

Southwest Antennas designs and manufactures high-performance RF & Microwave antennas and accessories designed for tod...

Innovative Integration

  Since 1988, Innovative Integration has grown to become one of the world's leading suppliers of DSP and data ac...

CORWIL Technology Corp

CORWIL Technology, the premier US based, IC assembly and test services subcontractor, offering full back-end assembly...

Master Bond

For over 35 years, Master Bond has been supplying aerospace and defense manufacturers with custom formulated compound...

United Electronic Industries Inc

UEI is a leader in the PC/Ethernet data acquisition and control, Data Logger/Recorder and Programmable Automation Con...


IndustryARC primarily focuses on Cutting Edge Technologies and Newer Applications of the Market. Our Custom Research ...


Harsh Environment Protection for Advanced Electronics and Components

This webinar will offer an opportunity to learn more about ultra-thin Parylene conformal coatings – how they are applied, applications they protect today, and the properties and benefits they offer, includin...

New Design Tools That Help You Develop Radar That Sees the Un-seeable and Detects the Undetectable

Xilinx EW/ISR System Architect, Luke Miller, has new tricks and he’s going to tell you all about them in a new Xilinx Webinar—for free. His Webinar will cover new ways to implement Radar functions including ...
Sponsored by:

Press Releases


Curtiss-Wright Corporation today announced that its Defense Solutions division has received a contract from Sierra Nevada Corporation (SNC) to supply its small form factor ...

Innovative Integration Announces the FMC-Servo

Camarillo, CA June 19, 2015, Innovative Integration, a trusted supplier of signal processing and data acquisition hardware and software solutions, today announced the FMC-S...


Curtiss-Wright Corporation today announced that its Defense Solutions division has further enhanced its innovative VRD1 high definition (HD) video management system (VMS) w...

All Access Sponsors

Mil & Aero Magazine

August 2015
Volume 26, Issue 8

Download Our Apps




Follow Us On...


Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles