The Migration path to MicroTCA

MicroTCA looks to VME, CompactPCI, and AdvancedTCA for potential converts to emerging small-form-factor standard.

BY Mark Lowdermilk

That MicroTCA packs a lot of punch in a small form factor is undeniable. The primary selling points for MicroTCA are impressive: an affordable next-generation computing architecture, high communications bandwidth, the latest multi-core processors, support for redundancy, and high availability—all in a small system footprint that is extremely scalable.

As with any emerging standard, however, adoption by its target markets is the ultimate measure of an architecture’s success.

In the case of MicroTCA, several markets stand squarely in its crosshairs: the telecommunications market with a focus on network and wireless communications equipment; test and measurement, including communications test and high-speed manufacturing inspection equipment; and the increasingly communication-centric military and aerospace market. Additional potential markets include medical imaging, industrial controls, and the physics research community.

Within these markets, propo- nents of MicroTCA are hoping to attract interest from CompactPCI and VME users looking for a next-generation architecture that can deliver the increased performance, scalability, and longevity these aging architectures lack, as well as AdvancedTCA adherents that are looking for a less expensive—yet still robust—feature set in a much smaller footprint.

OEMs that move to MicroTCA are going to do so because it is a next-generation architecture that delivers increased performance in a very small package. Although MicroTCA was introduced by the PCI Industrial Computer Manufacturers Group (PICMG) in 2006, there are already more than 50 companies worldwide offering Advanced Mezzanine Card (AMC) modules for the standard. This can be attributed to the fact that MicroTCA utilizes the same AMC cards as another PICMG effort—AdvancedTCA—which started in 2002.

MicroTCA is gaining traction quickly because it is an offshoot of AdvancedTCA; there is an overlap of the ecosystems in that regard and as a result, both architectures benefit.

The move from AdvancedTCA

Perhaps the most logical migration path to MicroTCA lies with AdvancedTCA users looking for a lower-cost solution and a smaller footprint.

The original intent of Advanced- TCA was to meet the requirements of the next generation of carrier-grade wired and wireless networking and telecommunications equipment, such as media gateways, video transcoders, and IPTV. As a result, AdvancedTCA was created to deliver massive processing and bandwidth with high availability and built-in redundancy.

However, it has also been unofficially dubbed “big iron” due to its overall size. For many applications, AdvancedTCA may be overkill and the final solution is usually quite large. For those that prefer AdvancedTCA’s features, but don’t want to invest in unnecessary functions and are looking for a smaller footprint, MicroTCA is a natural choice.

With communication bandwidth capabilities in the range from 40 gigabits per second to faster than 1 terabit per second, MicroTCA has more than enough bandwidth for most demanding applications.

Starting with a small two-blade chassis and scaling up to a maximum 12-blade solution, 2U MicroTCA processors blades (PrAMCs) can be networked together to deliver a tremendous amount of computing resources, particularly when each could be designed with the latest multi-core processors to further increase computing power. Additional system components include power modules, cooling units, and AMCs for everything from mass storage to high-end graphics cards.

Product applications for the MicroTCA architecture include wireless base stations, Wi-Fi/WiMAX radios, optical networks, and media servers, to name a few. OEM test and measurement equipment for network enterprise and wireless equipment is also well served by MicroTCA’s feature set.

MicroTCA also delivers the high reliability inherent in AdvancedTCA with availability up to five nines (0.999999). As with AdvancedTCA, redundancy and cooling configurations can be scaled for full, partial, or no redundancy, depending on the application’s requirements.

A next-generation platform for VME and CompactPCI

Although VME and CompactPCI are still viable for many applications, these architectures are struggling to meet the demanding bandwidth requirements of today’s increasingly communication-centric industrial and military applications.

As a result, many VME and CompactPCI users are looking for the next-generation platform that can deliver on both counts. MicroTCA has the added benefit of further decreasing the size of the final solution, with its 2U cards being smaller than VME and CompactPCI’s 3U and 6U offerings.

A lot of people that have been using VME and CompactPCI for a long time, pushing it along and keeping it going. Now they face the decision to go to a new architecture. MicroTCA would be a good option because of its size and increased performance.

Making the move to MicroTCA

To facilitate the move to MicroTCA, companies are going one step further to offer integrated solutions to help reduce the complexity, improve time to market, and reduce risk to OEM partners by delivering an application-specific solution that meets the customer’s exact needs.

Such application-ready solutions drastically reduce integration time and costs and eliminate the need for customers to work with several vendors and integrate the components into a complete system themselves.

Customers may be used to dealing with several vendors, particularly with VME, Compact PCI, and AdvancedTCA; yet, in this economy with few resources, less time, and the need to get to market quickly, OEMs are searching for technology experts to help them reduce costs and improve time to market.

The modular embedded computing marketplace, including MicroTCA, can be difficult to navigate. The final solution will be an application-specific solution that is assembled and pre-tested before it is delivered to the customer.

With an integrated solution, the customer can focus on higher levels of activity that bring more value. So there are savings in terms of direct cost, indirect costs, and a reduction in risk factors.

Mark Lowdermilk is president and chief executive officer of Embedded Planet in Cleveland. Visit the company online at

More Military & Aerospace Electronics Current Issue Articles
More Military & Aerospace Electronics Archives Issue Articles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

XCalibur4500 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 6U CompactPCI Module

The XCalibur4500 is a high-performance 6U CompactPCI single board computer that is ideal for rugg...

XPedite7501 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled XMC Module

The XPedite7501 is a high-performance, low-power, XMC module based on the 5th generation Intel® C...

XCalibur4501 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction-Cooled 6U CompactPCI Module

The XCalibur4501 is a high-performance 6U CompactPCI single board computer that is ideal for rugg...

XPedite7530 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 3U CompactPCI Module

The XPedite7530 is a high-performance 3U CompactPCI single board computer that is ideal for rugge...

XCalibur4540 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 6U VPX Module

The XCalibur4540 is a high-performance, 6U OpenVPX™, multiprocessing, single board computer that ...

XPedite7570 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 3U VPX-REDI Module

The XPedite7570 is a high-performance, 3U VPX-REDI, single board computer based on the 5th genera...

XPedite7572 | 5th Gen Intel® Core™ i7 Broadwell-H Based Conduction- or Air-Cooled 3U VPX-REDI Module with SecureCOTS™

The XPedite7572 is a secure and high-performance, 3U VPX-REDI, single board computer based on the...

Medusa VPX3424

The AcQ Inducom “Medusa”VPX3424 is a 3U OpenVPX™ Single Board Computer (SBC) featuring the T4240 ...

XChange3100 | 6U VPX 10 Gigabit Ethernet Switch with Optional Layer 2 Switching and Layer 3 Routing Management Support

The XChange3100 is a conduction- or air-cooled, 6U OpenVPX™ 10 Gigabit Ethernet switch module. Th...

XPedite7470 | Intel® Core™ i7 Processor-Based Conduction- or Air-Cooled 3U VPX-REDI SBC

The XPedite7470 is a high-performance, low-power, 3U VPX-REDI, single board computer based on the...

Related Companies

Manufactures industrial rugged computers and peripherals, including custom rack servers, rugged LCD monitors, mini PC...

AcQ Inducom

Develops and produces non-certified and certified high-tech modular hardware- and software solutions for on-board and...

Master Bond

For over 35 years, Master Bond has been supplying aerospace and defense manufacturers with custom formulated compound...

United Electronic Industries Inc

UEI is a leader in the PC/Ethernet data acquisition and control, Data Logger/Recorder and Programmable Automation Con...


Specializes in the design and manufacture of high performance analog semiconductors, Products include amplifiers, ana...

Innovative Integration

  Since 1988, Innovative Integration has grown to become one of the world's leading suppliers of DSP and data ac...

Active Silicon Inc

Designs and manufactures frame grabbers and embedded vision systems in PCI express, PCI/104-express, PMC, cPCI and C...

Electronic Development Labs Inc (EDL)

Since 1943, EDL has strived to provide quality products, outstanding customer service, and superior technical support...

North Atlantic Industries Inc

The top 10 defense companies worldwide rely  on NAI Solutions NAI is a leading independent provider of specializ...


MPL AG develops and manufactures rugged embedded computers and ethernet solutions with high quality standards. The su...
Wire News provided by   

Press Releases

Model INCX-4001

The INCX-4001 consists of a high quality audio transceiver specifically designed to implement a complete fiber optic intercom.

Model PS-1210

The PS-1210 is a 1A, 12VDC stand-alone or rack mountable non-switcher (no RF noise) power supply.

Model OS-3121

Optical switches are utilized to disconnect, bypass and reroute fiber optic communications. All of these optical switches are purely optical path, there is no optical to e...


New Design Tools That Help You Develop Radar That Sees the Un-seeable and Detects the Undetectable

Xilinx EW/ISR System Architect, Luke Miller, has new tricks and he’s going to tell you all about them in a new Xilinx Webinar—for free. His Webinar will cover new ways to implement Radar functions including ...
Sponsored by:

Latest from the Paris Air Show

All Access Sponsors

Mil & Aero Magazine

May 2015
Volume 26, Issue 5

Download Our Apps




Follow Us On...


Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles