Anemone FPGA-based co-processor introduced by BittWare to simplify digital signal processing for radar and SIGINT


CONCORD, N.H.—BittWare Inc. in Concord, N.H., is introducing a numeric co-processor for field programmable gate array (FPGA)-based embedded computing systems that require complex or changing processing algorithms, such as radar processing, signals intelligence (SIGINT), and software-defined radio (SDR). The BittWare FPGA co-processor, called Anemone, is a floating-point processing engine that is programmable in the C computer language.

The Anemone chip, designed to function with FPGAs from Altera Corp. in San Jose, Calif., has processors that together provide 32 billion floating-point operations per second while consuming two watts of power. The FPGA co-processor is based on the Epiphany architecture from Adapteva Inc. in Lexington, Mass.

The Anemone FPGA co-processor can make designing digital signal processing (DSP) systems with Altera FPGAs well rounded and versatile, explains Jeff Milrod, BittWare’s president and chief executive officer. Anemone “bolts on seamlessly to your FPGAs and adds a huge safety valve,” Milrod says. “FPGAs and their development tools are still limited, are still a very complex development environment, and are not friendly to algorithms that change quickly.”

Systems designers can connect several Anemone chips to scale up to compute blocks as large as 4,096 processors that provide compute performance of eight trillion floating-point operations per second. “The attraction is for people who are good at FPGAs and have some FPGA resources, but not enough,” Milrod explains. “They can have the FPGA do what it’s good at, and have the processor do what it’s good at.”

Using the Anemone chip can make designing with FPGAs easier than it is today because the Anemone runs in the C programming language. Using FPGAs alone can be difficult because these devices require skill with the VHSIC Hardware Description Language (VHDL), which not all companies have.

Making FPGAs easier to use will make an Anemone/FPGA architecture competitive with embedded computing that relies on general-purpose processors (GPPs) like the 2nd Generation Intel Core i7, as well as on graphics processing units (GPUs) like the Nvidia CUDA. The beauty of an Anemone/FPGA architecture is: it is physically smaller and lighter, and it consumes less power than a GPP/GPU architecture, Milrod says.

 Click to Enlarge
BittWare is raising the stakes in the digital signal processing game with its introduction of an FPGA-based co-processor called Anemone, which could simplify the use of field-programmable gate arrays in DSP systems.

BittWare will release products this summer based on the Anemone FPGA co-processor and Altera FPGAs packaged on commercial off-the-shelf (COTS) boards in form factors such as the VITA-57 FPGA Mezzanine Card, Advanced Mezzanine Card, 3U VPX, and PCI Express.

BittWare designed Anemone for complex signal processing, and the chip is more efficient for this job than are traditional floating-point digital signal processing chips, Milrod says. Each Anemone chip has 16 eCore processors, each with a general-purpose instruction set, which perform floating-point computations as single-precision IEEE 754.

“Our machine,” Milrod explains, “can do one instruction at a time and one load store at a time. There is no caching, so you have direct control over the memory structures. There is no funny business with extensions, SIMD, or subsets; it’s straight-up ANSI C. Anything you have in ANSI C will run right out of the box on our machine. It won’t be optimized, but it will run.”

BittWare has an exclusive license to use the Adapteva Epiphany architecture in aerospace and defense applications. The Anemone chip is based on the 16-core, four-link-port version of the Epiphany silicon demonstration platform, which includes the processor and memory interconnection mesh. Adapteva remains free to market intellectual property for ASICs and SOCs, and for licensing the architecture and processor technology to other companies.

Although the Anemone/FPGA architecture aims at many of the same floating-point-intensive embedded computing applications in which the GPP/GPU architecture is becoming popular, Milrod says it might not make sense to convert systems that are already using the GPP/GPU approach.

“For someone not using FPGAs, but who is doing everything in Nvidia graphics without major power problems, then this probably won’t be very attractive to him,” Milrod says. “If they are already down that road, this does not add any value, but if someone is starting from scratch, this is a new signal processing alternative.”

Some applications where the Anemone/FPGA architecture would make the most sense include handheld and soldier-worn computing systems, unmanned vehicles, and other applications where size, weight, and power consumption are driving concerns.

Milrod also envisions the Anemone/FPGA architecture’s use in advanced phased-array radar systems in which a separate processor could be placed at each radar element to speed signal filtering and conversion from analog to digital signals. “This is low-enough power to do that,” Milrod says.


More Military & Aerospace Electronics Current Issue Articles
More Military & Aerospace Electronics Archives Issue Articles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

XPedite7574 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 3U VPX-REDI Module

The XPedite7574 is a high-performance, 3U VPX-REDI, single board computer based on the 5th genera...

XCalibur1645 | Freescale Eight-Core P4080 Processor-Based Conduction-Cooled 6U VPX Module

The XCalibur1645 is a high-performance, 6U VPX, single board computer supporting Freescale QorIQ ...

XCalibur5090 | Dual Virtex-7 Based Digital Signal Processing 6U LRM FPGA with Quad 2500 MSPS DAC and 3200 MSPS ADC

The XCalibur5090 is a high-performance, reconfigurable, conduction-cooled 6U LRM module based on ...

S & C Dual-Band Omni Antennas

SWA Dual-Band Omni Antennas are designed to cover the S & C bands, and are available with multipl...

Ultra-Flex Omni Antennas

The Southwest Antennas Ultra-Flex is a line of S-Band & C-Band omni antennas with a unique enviro...

4G LTE Cellular Omni Concealment Antenna

The 4G LTE Cellular Omni Concealment Antenna from Southwest Antennas measures only 4.70" x 1.70" ...

Body Worn Antennas

Body Worn Antennas from SWA are ideal for covert surveillance applications where the radio and an...

UEINet™ Ultra Compact Gigabit Ethernet I/O Module

The UEINet™ Series Ethernet I/O module (Cube) is an ultra compact data acquisition, control and I...

XPand6903 | Rugged, Sealed, and Compact Intel® Atom-Based Fanless Embedded Box PC

The XPand6903 is a rugged, sealed, and compact fanless embedded box PC utilizing the Intel® Atom™...

ADLMES-8200 Rugged Modular Enclosure Systems

The ADLMES-8200 is a highly innovative embedded enclosure and is designed for MIL-STD 704/1275/46...

Related Companies

LiquidCool Solutions

LiquidCool Solutions is a technology development firm with patents surrounding cooling electronics by total immersion...


Is a mechanical engineering consulting company headquartered in Los Angeles, CA with operations in Billerica, MA, pro...

Curtiss-Wright Defense Solutions

About Curtiss-Wright Defense Solutions Curtiss-Wright Defense Solutions (CWDS) is a long established techno...


Mil Spec EMC/NEMP/ filters and EMC product solutions for military applications.


PALMARII Dynamics is a Swedish company incorporated in 2012 as a competence centre for specialist naval architecture ...


Pelorus Naval Systems is a specialist naval defense engineering and support services company with headquarters in Ran...

Southwest Antennas

Southwest Antennas designs and manufactures high-performance RF & Microwave antennas and accessories designed for tod...


ISVI designs, produces and sells machine-vision camera systems combining high-speed and high-resolution sensors with ...

Premier Polymers

Provides seamless epoxy flooring and industrial resinous coatings

CORWIL Technology Corp

CORWIL Technology, the premier US based, IC assembly and test services subcontractor, offering full back-end assembly...


Harsh Environment Protection for Advanced Electronics and Components

This webinar will offer an opportunity to learn more about ultra-thin Parylene conformal coatings – how they are applied, applications they protect today, and the properties and benefits they offer, includin...

New Design Tools That Help You Develop Radar That Sees the Un-seeable and Detects the Undetectable

Xilinx EW/ISR System Architect, Luke Miller, has new tricks and he’s going to tell you all about them in a new Xilinx Webinar—for free. His Webinar will cover new ways to implement Radar functions including ...
Sponsored by:

Press Releases


Curtiss-Wright Corporation today announced that its Defense Solutions division has received a contract from Sierra Nevada Corporation (SNC) to supply its small form factor ...

Innovative Integration Announces the FMC-Servo

Camarillo, CA June 19, 2015, Innovative Integration, a trusted supplier of signal processing and data acquisition hardware and software solutions, today announced the FMC-S...


Curtiss-Wright Corporation today announced that its Defense Solutions division has further enhanced its innovative VRD1 high definition (HD) video management system (VMS) w...

All Access Sponsors

Mil & Aero Magazine

August 2015
Volume 26, Issue 8

Download Our Apps




Follow Us On...


Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles