Four companies in place for DARPA program to develop precision micro-gyro sensor for smart munitions

BY JOHN KELLER

ARLINGTON, Va.—Navigation and guidance researchers at the U.S. Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., have chosen four technology companies so far for a project to develop a miniature gyroscope for smart munitions, ships, vehicles, aircraft, and infantry soldiers.

DARPA officials have awarded contracts to the Charles Stark Draper Laboratory in Cambridge, Mass., and the Systron Donner Inertial segment of Custom Sensors & Technologies (CST) in Concord, Calif., to participate in the Microscale Rate Integrating Gyroscope (MRIG) program.

The Charles Stark Draper Laboratory and Systron Donner join the Northrop Grumman Corp. Electronic Systems segment in Woodland Hills, Calif., and Honeywell Aerospace Microelectronics & Precision Sensors segment in Plymouth, Minn., as MRIG contractors.

DARPA awarded a $5.5 million contract to the Charles Stark Draper Laboratory and a $2.6 million contract to Systron Donner to develop a micro-sensor vibrating-structure gyroscope that will measure rotation over a wide range of dynamic conditions.

Honeywell and Northrop Grumman won MRIG contracts last March.

DARPA is asking microelectronics experts at the four companies to develop the micro-scale gyro for single-chip inertial navigation and guidance systems that operate independently of the satellite-based global positioning system (GPS) or any other external signals for uncompromised navigation and guidance.

Click to Enlarge
DARPA has chosen four navigation and guidance companies to develop MEMS gyros, like those shown above, to help guide smart munitions, ships, vehicles, aircraft, and infantry soldiers.

A vibrating-structure gyroscope operates on the principle that a vibrating object tends to keep vibrating in the same plane as its support is rotated. It is less complex and more affordable to design and build than is a conventional rotating gyroscope of similar accuracy.

DARPA scientists are asking the Charles Stark Draper Laboratory, Systron Donner, Northrop Grumman, and Honeywell to develop these kinds of micro sensors to serve as crucial parts of advanced inertial measurement units, and to be small enough for use in guided munitions, handheld devices, and add-in portable guidance, navigation, and control units.

Researchers at the four companies will develop micro-gyros that are not influenced by the kinds of mechanical shocks, temperatures, vibrations, spin rates, and accelerations commonly found in guided munitions. Devices the companies will develop and prototype are expected to operate on no more power than a few tens of milliwatts.

The DARPA MRIG program seeks to create a vibratory gyroscope that measures the angle of rotation in a way that the gyros can extend their dynamic range, as well as eliminate the need for integrating angular rate information. The overall goal is to eliminate an accumulation of errors due to numerical and electronic integration.

DARPA scientists are asking the companies to develop isotropic two-degree-of-freedom resonators—especially microscopic 3D shell resonators—which are spheres, wine-glass shaped structures, or any spatially distributed shells with an axis of symmetry.

Rate integrating gyroscopes have high dynamic range, accuracy due to direct measurement of the angle of rotation, and the ability to operate interchangeably in the whole angle and angular rate modes, DARPA experts point out.

The four companies have substantial challenges ahead, as rate integrating gyroscope technology has never been demonstrated on the microscale level. Rate integrating gyroscope miniaturization would offer the potential for developing an inertial navigation system for spin-stabilized missiles, pointing technology for high-G munitions, and azimuth-based target mapping.

FOR MORE INFORMATION visit the Charles Stark Draper Lab- oratory online at www.draper.com, Systron Donner Inertial at www.systron.com, Northrop Grumman Electronic Systems at www.es.northropgrumman.com, Honeywell Aerospace Microelectronics & Precision Sensors (formerly the Honeywell Solid-State Electronics Center) at www.ssec.honeywell.com, and DARPA at www.darpa.mil.

More Military & Aerospace Electronics Current Issue Articles
More Military & Aerospace Electronics Archives Issue Articles


Easily post a comment below using your Linkedin, Twitter, Google or Facebook account.


The Innovation That Matters™ Quiz

Innovation is one of the key drivers in the Defense industry. View this short video of Leon Woo, VP of Engineering at Mercury Systems, on the role of innovation. Then, answer 3 simple questions correctly to be entered into a drawing to win an Eddie Bauer fleece jacket!

CONGRATULATIONS TO OUR TWO MOST RECENT WINNERS. "Nick from SPARWAR" and "Bridget from AOC."


Related Products

RR2P Removable Canister RAID System

Transportable data storage for mobile field use aboard planes, ships and ground transport. 2U, du...

Sensors Unlimited GA1280JSX High Resolution, Mil-Rugged, Extended High Sensitivity InGaAs SWIR Camera

Manufactures a high resolution, mil-rugged, extended high-sensitivity 0.9 Mpixel InGaAs SWIR came...

M1U20xx 1U Military-Grade Computer System

The M1U20xx Military-Grade Rack Mount System is a reliable high-performance mil-spec 1U solution ...

Related Companies

Winchester Systems Inc

At its founding in 1981, Winchester Systems introduced its first 5 MB disk system for Intel development system users....

Extreme Engineering Solutions Inc (X-ES)

 Extreme Engineering Solutions, Inc. (X-ES) is a leader in the design, manufacture, and support of standard and ...

American Infrared Solutions (AIRS)

Wire News provided by   

Most Popular Articles

Webcasts

Meeting the Gen3 backplane challenge with OpenVPX and COTS

Tight Pentagon budgets mean military systems must stay in the field for longer than ever before. This doesn't mean obsolete technology, however. Today's military electronics are being upgraded constantly, an...
Sponsored by:

Digital signal processing for signals intelligence and electronic warfare

Military & Aerospace Electronics presents an expert Webcast on the design considerations for blending general-purposes processors (GPUs), general-purpose graphics processors (GPGPUs), field-programmable ...
Sponsored by:

Advantages of Intel Architecture Products and Wind River Solutions in Military & Aerospace Applications

This webinar explains the individual advantages of the Intel Architecture hardware, available for long-life supply, and the WRS software portfolio.  There are extraordinary advantages of combining such ...
Sponsored by:

social activity

All Access Sponsors


Mil & Aero Magazine

February 2014
Volume 25, Issue 2
file

Download Our Apps



iPhone

iPad

Android

Follow Us On...



Newsletters

Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information
SUBSCRIBE

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers
SUBSCRIBE

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications
SUBSCRIBE

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles
SUBSCRIBE