Surviving the space environment

Systems architects and integrators rely on radiation-hardened and radiation-tolerant innovations to ensure the extended, uninterrupted operation of electronics in space.

"Space is an extremely hazardous vacuum filled with lethal radiation, storms of micrometeoroids, extreme variations of temperature, and all manner of man-made debris. Any one or a combination of these can damage or even destroy unshielded satellites and other spacecraft," explains a spokesperson at the National Aeronautics and Space Administration (NASA).

Space is wrought with radiation, which can alter the effectiveness of, interfere with, and even render useless myriad space-based systems. As a result, systems architects and systems integrators are turning to aerospace technology firms for the latest radiation-hardened and radiation-tolerant electronics components and solutions.

Microsemi radiation-tolerant FPGAs play a role in various space-based systems, including the Mars Science Laboratory.
Microsemi radiation-tolerant FPGAs play a role in various space-based systems, including the Mars Science Laboratory.

Essential for effectiveness

"High-reliability radiation-hardened and radiation-tolerant components are vital in aerospace and defense applications," insists Minh Nguyen, marketing manager, Space FPGAs (field-programmable gate arrays) at Microsemi Corp. in San Jose, Calif. "They contribute to the reliability of the whole system and the success of the mission."

Aerospace, defense, and commercial applications and organizations rely heavily on space-based systems, such as communications satellites, which is driving the need for rugged, reliable electronics. "Failure is not an option in space, due to its great impact to civilian and national security if there is an interruption in service," Nguyen adds.

Cost and convenience are also critical factors to consider, given the difficulties associated with servicing or replacing space-based electronics. "An aerospace or defense mission is usually costly and requires the highest-quality electronics because these are systems which have to work in an environment where there is no easy way to access, debug, and repair," Nguyen affirms.

For these and other reasons, radiation-hardened and -tolerant components are "tested and screened to survive the most rigorous radiation in the space environment and maintain their reliability throughout the life of a mission," Nguyen says.

Space standards

Aerospace professionals are seeing more stringent demands from engineers and managers for electronics components and systems that meet the highest quality standards, such as Qualified Manufacturer List (QML) Class V-considered to be the highest qualification for space integrated circuits (ICs).

U.S. Defense Logistics Agency officials have qualified Microsemi's RTAX-S/SL radiation-tolerant FPGAs under Qualified Manufacturers List (QML) Class V in accordance with military performance standard MIL-PRF-38535 space-level qualification requirements. QML Class V qualification provides designers and users of space-flight systems with an added level of assurance as to the quality and reliability of the RTAX-S/SL FPGA product family, says a spokesperson.

The achievement marks an important milestone in the company's history, according to Esam Elashmawi, vice president and general manager at Microsemi. "Microsemi has been providing high-reliability solutions to the aerospace market for more than five decades, and we delivered our first radiation-tolerant RTAX-S FPGA in 2004," he says.

Microsemi's radiation-tolerant FPGAs have performed flight-critical functions in space systems orbiting around the Earth, Moon, Mars, Venus, and the Sun, as well as on missions to the surface of Mars and into the furthest reaches of the solar system, according to Nguyen.

"In many of these programs, like the Mars Science Lab and Lunar Reconnaissance Orbiter, Microsemi radiation-tolerant FPGAs play a vital role in control and telemetry applications for the spacecraft, as well as mission-critical science instruments," Nguyen says. Microsemi radiation-tolerant FPGAs are currently employed in a variety of commercial and defense space programs and applications, including telemetry tracking and control, electrical power systems, digital communication payloads, radio-frequency communications payloads, imaging payloads, and solid-state recorders.

Space-bound innovations, such as the Lunar Reconnaissance Orbiter (with Apollo mission imagery in the background), require radiation-hardened/tolerant components.
Space-bound innovations, such as the Lunar Reconnaissance Orbiter (with Apollo mission imagery in the background), require radiation-hardened/tolerant components.

Astronomical HPC

The proven ability to mitigate the effects of radiation is just one of the requirements aerospace engineers must consider when selecting the optimal electronics for space-based systems. Military and commercial space customers are under the same pressures: higher functionality and higher performance, while not consuming excessive power, Nguyen notes. In fact, space customers in some programs-such as low Earth orbit, tactical, and short-duration programs-require a combination of reprogrammability, functionality, and radiation tolerance for the mission.

Modern space missions are collecting a wealth of data, driving the need for increased processing power and capacity. Engineers at BAE Systems in Manassas, Va., are developing fourth-generation, radiation-hardened computers for space applications using Power Architecture technology licensed from Freescale Semiconductor in Austin, Texas. Use of Freescale's Power Architecture processor cores is expected to increase onboard satellite processing by 10 times the current rate, enabling high-performance computing (HPC) onboard satellites and parallel multi-core processing for myriad space applications.

"The licensing arrangement enables a massive leap in our processing capability, providing our customers the ability to maximize application performance while leveraging existing infrastructure and experience," explains Ian McDonald, director of space products and systems at BAE Systems. "Freescale's experience with high-performance computing provides BAE Systems a technological advantage to enable mission applications that are unattainable with current-generation hardware platforms."

BAE Systems' space-qualified computer products and application-specific integrated circuits (ASICs), more than 600 of which have been placed in orbit, can now benefit from Freescale's e5500 64-bit Power Architecture core and QorIQ platform, including CoreNet and OCeaN fabrics, memory controller, memory elements, and high-speed interfaces.

Electronics assurances

"The importance of radiation-hardened/tolerant electronics cannot be overstated; the assurance of highly reliable, qualified, and environmentally hardened devices are all key to the success of any aerospace application/program," acknowledges Elaine Gonsalves, business development manager, Standard Products at Aeroflex in Colorado Springs, Colo. A variety of components-including microprocessors, memory, medium-scale integration (MSI) logic, ASICs, and power electronics-from Aeroflex are employed in such aerospace applications as command and data handling, FPGA boot loading, and SpaceWire routing.

The Core On-Board Computer (OBC) of a Germany University project, called the "Flying Laptop" micro satellite, uses several Aeroflex Colorado Springs Standard Products, Gonsalves reveals. "The project's primary objectives are technology evaluation and earth observation," she says.

The OBC uses the Aeroflex UT699 LEON 3FT SPARC V8 microprocessor, as well as the company's static random-access memory (SRAM), RadClock and clock buffer, and several MSI logic devices. The project also employs software tools supporting the real-time executive for multiprocessor systems (RTEMS) operating system managed by OAR Corp. in Huntsville, Ala., and CCSDS IP from Aeroflex Gailser in Sweden. A flight variant of the OBC is currently undergoing integration testing, whereas the satellite is expected to launch in 2013.

SWaP in space

Designers and integrators of space-based systems are plagued by strict size, weight, and power (SWaP) requirements; yet, aerospace technology firms are partnering and innovating to help alleviate such challenges.

International Rectifier (IR), a provider of power-management technology in El Segundo, Calif., introduced its GH Series of RAD-Hard DC-DC converters to maximize efficiency for onboard spacecraft applications requiring long mission life, such as up to 15 years. GH Series devices are well suited for designs using digital signal processors and FPGAs that require a supply voltage as low as 1.0 volt. They also feature an internal electromagnetic interference (EMI) filter and magnetically coupled feedback for robust operation in radiation environments.

"As a low output voltage, highly efficient solution, the GH Series addresses the ongoing need to reduce the overall size and weight of the system together with the increasing requirements of FPGA and other digital circuitries for increased bandwidth and data processing speed of spacecraft electronics," says Tiva Bussarakons, marketing director for IR's HiRel DC-DC converter products.

The radiation-tolerant ProASIC3 FPGA from the Microsemi SoC Products Group is well suited to and employed in a variety of aerospace applications.
The radiation-tolerant ProASIC3 FPGA from the Microsemi SoC Products Group is well suited to and employed in a variety of aerospace applications.

Powerful prospects

"A reliable, ongoing power supply is essential to a space mission's success," a European Space Agency (ESA) spokesperson says. Power electronics, such as power conditioning and power conversion devices, can also help prevent harmful current surges and switch voltages.

International Rectifier power supplies are being used in low Earth orbit (LEO) and geosynchronous (GEO) satellite applications. "Radiation-hardened parts are required in most GEO satellites," explains Michael Sullivan, director of marketing at International Rectifier. "In LEO satellites, the radiation often can move into radiation tolerance levels due to the location of the orbit and the duration of flight.

"In spacecraft, both radiation-hardened and radiation-tolerant are used," Sullivan adds. "IR continues to develop new radiation-hardened devices for the space market as the number of satellites continues to grow both in size and in number."

Aeroflex RAD in Colorado Springs, Colo., uses an "Intellectual Property Liberation" (IP Lib) model for delivering radiation-tolerant electronics for satellites systems, describes Joseph Benedetto, vice president, Radiation Technology at Aeroflex RAD. Aeroflex RAD partnered with Linear Technology Corp., also in Colorado Springs, to manufacture the RAD-1419, a radiation-tolerant analog-to-digital (A/D) converter that uses the Linear Technology LTC1419, an A/D converter that draws 150mW from ±5-volt supplies. "By partnering with Linear Technology and using the IP Lib model, Aeroflex RAD was able to introduce this product to the satellite community in a fraction of the time and at a fraction of the cost of traditional radiation-hardened components," Benedetto says.

The RAD-1419 radiation-tolerant analog-to-digital (A/D) converter from Aeroflex RAD incorporates the Linear Technology LTC1419 A/D converter.
The RAD-1419 radiation-tolerant analog-to-digital (A/D) converter from Aeroflex RAD incorporates the Linear Technology LTC1419 A/D converter.

COTS considerations

Aerospace and defense organiza- tions continue to invest in, and benefit from, commercial off-the-shelf (COTS) technologies and products.

"To reduce weight and component cost, distributed power systems are relying more on smaller, less expensive point of load (POL) converters used in conjunction with the larger, traditional, isolated DC-DC converters," says Monty Pyle, executive director of sales at VPT, says. "We've been asked for a higher current option without the need to waste space and weight stringing together multiple POL converters."

VPT Inc., part of the HEICO Electronic Technologies Group and located in Bothell, Wa., provides off-the-shelf solutions, such as DC-DC power converters and EMI filters, for space applications and customers, including NASA. VPT engineers designed and manufactured the company's SVGA0515 Series point of load DC-DC converter for use in the extreme environment of space and to save board space, weight, and cost for power systems headed for LEO, MEO (medium Earth orbit), GEO, and deep space missions.

VPT added the SVGA0515 15-amp, radiation-hardened device to its line of space DC-DC converters. The new offering delivers up to 50 watts of output power and is qualified to MIL-PRF-38534 Class H and Class K, specifications set by the Defense Logistics Agency. SVGA0515 is "packaged in hermetically sealed metal cases for reliable power delivery through the extreme temperature, shock, vibration, and radiation environments of space travel," reveals a representative.

Bright future

Aerospace engineers and technology providers will no doubt continue to advance the state of the art in space-based electronics. "There will continue to be a need in the Aerospace industry for rad-hard and rad-tolerant components and systems in the future," Aeroflex Colorado Springs' Gonsalves predicts.

Radiation mitigation

Mentor Graphics Corp. personnel in Wilsonville, Ore., developed the company's Precision Rad-Tolerant FPGA design solution for aerospace and high-reliability applications with guidance from NASA.

Mentor's synthesis-based, radiation effects mitigation solution addresses "the critical need for automated, FPGA vendor-independent methods of radiation effects mitigation," says a company spokesperson.

The Precision Rad-Tolerant product is designed to make it easier for designers to incorporate various radiation effects mitigation schemes, such as automated, multi-vendor, multi-mode Triple Modular Redundancy (TMR), and to help reduce the risk of functionality problems, such as soft errors caused by single event upset and single event transient disruptions.

Precision Rad-Tolerant features the synthesis-based insertion of fault-tolerant finite state machines (FSM).

"The resulting FSM can 'absorb' radiation-induced single event upsets, mitigating their effect rather than switching the state machine into an unknown or unpredictable state," the spokesperson adds. "This form of safeguard meets the needs of a wide range of high-reliability applications."


3D Plus
Aeroflex RAD
Aitech Defense Ssytems
ASIC Advantage
BAE Systems Electronic Solutions
Cadence Design Systems
C-MAC Micro Technology
Crane Interpoint
Curtiss-Wright Controls Embedded Computing
Cypress Semiconductor
Freescale Semiconductor
HDL Research Lab
Honeywell Microelectronics and Precision Sensors honeywellmicro
International Rectifier
Intersil Corp.
Linear Technology Corp.
Maxwell Technologies
Mentor Graphics
Meggitt Sensing Systems
Microelectronics Research Development Corp.
Micropac Industries
Microsemi Corp.
Modular Devices
MS Kennedy
Northrop Grumman Aerospace Systems
Peregrine Semiconductor
Radiation Assured Devices
Rochester Electronics
Space Micro
Teledyne Microelectronic Technologies
Tezzaron Semiconductor
Texas Instruments
Triad Semiconductor
Ultra Communications
VPT Inc.

More Military & Aerospace Electronics Current Issue Articles
More Military & Aerospace Electronics Archives Issue Articles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

Custom and OEM Camera Design

We provide custom designs for both modifications to existing systems and development of new produ...

Micro-D Connectors

Highly rugged and compact designs in shell styles from 9 to 51 contacts. The Micro-D connectors i...

Omnetics Nano-D Bi-Lobe® Latching Connectors

Bi-Lobe® connectors utilize rugged and reliable flex pin contact system. Spaced on 25 mil (.64mm)...

Nano-D Bi-Lobes® Connectors Dual Row Horizontal SMT (Type AA)

Horizontal SMT Bi-Lobe® nanos offer an extremely low profile package that is well suited to pick ...

Latching Micro-D Connectors

Omnetics high reliability Micro-D connectors are available with Quick Latch System. For applicati...

Nano-D BiLobe® Connectors -(COTS)

Sizes are 9, 15, 21, 25, 31, 37 , 51 & 65 pin, at .025 Mil. Pitch(Currently Available), mating pi...

Hybrid Micro-D Connectors

Omnetics high reliability Micro-D connectors are available withmixed power/signal contact layouts...

XPedite7575 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 3U VPX-REDI Module

The XPedite7575 is a high-performance, 3U VPX-REDI, single board computer based on the 5th genera...

XTend7103 | COM Express® Carrier for COM Express® Type 10 Mezzanine Modules

The XTend7103 is a COM Express® carrier card designed to provide a low-cost and compact platform ...

XPort6173 | 3U VPX Carrier for Two 2.5 in. Solid-State Drives (SSDs)

The XPort6173 supports two, standard, 2.5 in. Solid-State Drives (SSDs) in a single 0.8 in. or 1....

Related Companies

Interface Displays & Controls Inc

Certified ISO-9001/AS9100, veteran-owned, small business. Interface specializes in designing, reverse-engineering and...

Southwest Antennas

Designs and manufactures high-performance RF and Microwave antennas and accessories designed for today’s communicatio...

Curtiss-Wright Defense Solutions

About Curtiss-Wright Defense Solutions Curtiss-Wright Defense Solutions (CWDS) is a long established techno...

United Electronic Industries Inc

UEI is a leader in the PC/Ethernet data acquisition and control, Data Logger/Recorder and Programmable Automation Con...

Fabritech Inc

Fabritech was established in 1986 and specializes in the fabrication of EMI, RFI, and thermal shielded products made ...

KAMAKA Electronic Bauelemente Vertriebs GmbH

One of the leading Hi-Rel suppliers in Central Europe for more than 23 years. The quality of our products and the tec...

Henniker Plasma

Plasma Treatment Equipment - Plasma Cleaners, Plasma Etchers, Plasma Coating & Plasma Surface ModificationWe are the ...

SHENMAO America Inc

Provides quality performance solder materials including: SMT assembly, lead free and tin lead solder paste, cored sol...

Cable Labels USA

Over the years we have also used and tested hundreds of products, the best ones we sell and use in our company every ...

InnovaQuartz LLC

Manufacturer of fiber-optic assemblies for spectroscopy and high-energy delivery with patented and proprietary techno...


The Intel Xeon-D processor and its role in high-performance embedded computing (HPEC)

The rugged Intel Xeon-D server-class multicore microprocessor is set to revolutionize high-performance embedded computing. By itself, the processor will bring unprecedented power to embedded computing applic...

Harsh Environment Protection for Advanced Electronics and Components

This webinar will offer an opportunity to learn more about ultra-thin Parylene conformal coatings – how they are applied, applications they protect today, and the properties and benefits they offer, includin...

Press Releases


Curtiss-Wright Corporation today announced that its Defense Solutions division has received a contract from Sierra Nevada Corporation (SNC) to supply its small form factor ...

Innovative Integration Announces the FMC-Servo

Camarillo, CA June 19, 2015, Innovative Integration, a trusted supplier of signal processing and data acquisition hardware and software solutions, today announced the FMC-S...


Curtiss-Wright Corporation today announced that its Defense Solutions division has further enhanced its innovative VRD1 high definition (HD) video management system (VMS) w...

All Access Sponsors

Mil & Aero Magazine

August 2015
Volume 26, Issue 8

Download Our Apps




Follow Us On...


Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles