Surviving the space environment

Systems architects and integrators rely on radiation-hardened and radiation-tolerant innovations to ensure the extended, uninterrupted operation of electronics in space.

"Space is an extremely hazardous vacuum filled with lethal radiation, storms of micrometeoroids, extreme variations of temperature, and all manner of man-made debris. Any one or a combination of these can damage or even destroy unshielded satellites and other spacecraft," explains a spokesperson at the National Aeronautics and Space Administration (NASA).

Space is wrought with radiation, which can alter the effectiveness of, interfere with, and even render useless myriad space-based systems. As a result, systems architects and systems integrators are turning to aerospace technology firms for the latest radiation-hardened and radiation-tolerant electronics components and solutions.

Microsemi radiation-tolerant FPGAs play a role in various space-based systems, including the Mars Science Laboratory.
Microsemi radiation-tolerant FPGAs play a role in various space-based systems, including the Mars Science Laboratory.

Essential for effectiveness

"High-reliability radiation-hardened and radiation-tolerant components are vital in aerospace and defense applications," insists Minh Nguyen, marketing manager, Space FPGAs (field-programmable gate arrays) at Microsemi Corp. in San Jose, Calif. "They contribute to the reliability of the whole system and the success of the mission."

Aerospace, defense, and commercial applications and organizations rely heavily on space-based systems, such as communications satellites, which is driving the need for rugged, reliable electronics. "Failure is not an option in space, due to its great impact to civilian and national security if there is an interruption in service," Nguyen adds.

Cost and convenience are also critical factors to consider, given the difficulties associated with servicing or replacing space-based electronics. "An aerospace or defense mission is usually costly and requires the highest-quality electronics because these are systems which have to work in an environment where there is no easy way to access, debug, and repair," Nguyen affirms.

For these and other reasons, radiation-hardened and -tolerant components are "tested and screened to survive the most rigorous radiation in the space environment and maintain their reliability throughout the life of a mission," Nguyen says.

Space standards

Aerospace professionals are seeing more stringent demands from engineers and managers for electronics components and systems that meet the highest quality standards, such as Qualified Manufacturer List (QML) Class V-considered to be the highest qualification for space integrated circuits (ICs).

U.S. Defense Logistics Agency officials have qualified Microsemi's RTAX-S/SL radiation-tolerant FPGAs under Qualified Manufacturers List (QML) Class V in accordance with military performance standard MIL-PRF-38535 space-level qualification requirements. QML Class V qualification provides designers and users of space-flight systems with an added level of assurance as to the quality and reliability of the RTAX-S/SL FPGA product family, says a spokesperson.

The achievement marks an important milestone in the company's history, according to Esam Elashmawi, vice president and general manager at Microsemi. "Microsemi has been providing high-reliability solutions to the aerospace market for more than five decades, and we delivered our first radiation-tolerant RTAX-S FPGA in 2004," he says.

Microsemi's radiation-tolerant FPGAs have performed flight-critical functions in space systems orbiting around the Earth, Moon, Mars, Venus, and the Sun, as well as on missions to the surface of Mars and into the furthest reaches of the solar system, according to Nguyen.

"In many of these programs, like the Mars Science Lab and Lunar Reconnaissance Orbiter, Microsemi radiation-tolerant FPGAs play a vital role in control and telemetry applications for the spacecraft, as well as mission-critical science instruments," Nguyen says. Microsemi radiation-tolerant FPGAs are currently employed in a variety of commercial and defense space programs and applications, including telemetry tracking and control, electrical power systems, digital communication payloads, radio-frequency communications payloads, imaging payloads, and solid-state recorders.

Space-bound innovations, such as the Lunar Reconnaissance Orbiter (with Apollo mission imagery in the background), require radiation-hardened/tolerant components.
Space-bound innovations, such as the Lunar Reconnaissance Orbiter (with Apollo mission imagery in the background), require radiation-hardened/tolerant components.

Astronomical HPC

The proven ability to mitigate the effects of radiation is just one of the requirements aerospace engineers must consider when selecting the optimal electronics for space-based systems. Military and commercial space customers are under the same pressures: higher functionality and higher performance, while not consuming excessive power, Nguyen notes. In fact, space customers in some programs-such as low Earth orbit, tactical, and short-duration programs-require a combination of reprogrammability, functionality, and radiation tolerance for the mission.

Modern space missions are collecting a wealth of data, driving the need for increased processing power and capacity. Engineers at BAE Systems in Manassas, Va., are developing fourth-generation, radiation-hardened computers for space applications using Power Architecture technology licensed from Freescale Semiconductor in Austin, Texas. Use of Freescale's Power Architecture processor cores is expected to increase onboard satellite processing by 10 times the current rate, enabling high-performance computing (HPC) onboard satellites and parallel multi-core processing for myriad space applications.

"The licensing arrangement enables a massive leap in our processing capability, providing our customers the ability to maximize application performance while leveraging existing infrastructure and experience," explains Ian McDonald, director of space products and systems at BAE Systems. "Freescale's experience with high-performance computing provides BAE Systems a technological advantage to enable mission applications that are unattainable with current-generation hardware platforms."

BAE Systems' space-qualified computer products and application-specific integrated circuits (ASICs), more than 600 of which have been placed in orbit, can now benefit from Freescale's e5500 64-bit Power Architecture core and QorIQ platform, including CoreNet and OCeaN fabrics, memory controller, memory elements, and high-speed interfaces.

Electronics assurances

"The importance of radiation-hardened/tolerant electronics cannot be overstated; the assurance of highly reliable, qualified, and environmentally hardened devices are all key to the success of any aerospace application/program," acknowledges Elaine Gonsalves, business development manager, Standard Products at Aeroflex in Colorado Springs, Colo. A variety of components-including microprocessors, memory, medium-scale integration (MSI) logic, ASICs, and power electronics-from Aeroflex are employed in such aerospace applications as command and data handling, FPGA boot loading, and SpaceWire routing.

The Core On-Board Computer (OBC) of a Germany University project, called the "Flying Laptop" micro satellite, uses several Aeroflex Colorado Springs Standard Products, Gonsalves reveals. "The project's primary objectives are technology evaluation and earth observation," she says.

The OBC uses the Aeroflex UT699 LEON 3FT SPARC V8 microprocessor, as well as the company's static random-access memory (SRAM), RadClock and clock buffer, and several MSI logic devices. The project also employs software tools supporting the real-time executive for multiprocessor systems (RTEMS) operating system managed by OAR Corp. in Huntsville, Ala., and CCSDS IP from Aeroflex Gailser in Sweden. A flight variant of the OBC is currently undergoing integration testing, whereas the satellite is expected to launch in 2013.

SWaP in space

Designers and integrators of space-based systems are plagued by strict size, weight, and power (SWaP) requirements; yet, aerospace technology firms are partnering and innovating to help alleviate such challenges.

International Rectifier (IR), a provider of power-management technology in El Segundo, Calif., introduced its GH Series of RAD-Hard DC-DC converters to maximize efficiency for onboard spacecraft applications requiring long mission life, such as up to 15 years. GH Series devices are well suited for designs using digital signal processors and FPGAs that require a supply voltage as low as 1.0 volt. They also feature an internal electromagnetic interference (EMI) filter and magnetically coupled feedback for robust operation in radiation environments.

"As a low output voltage, highly efficient solution, the GH Series addresses the ongoing need to reduce the overall size and weight of the system together with the increasing requirements of FPGA and other digital circuitries for increased bandwidth and data processing speed of spacecraft electronics," says Tiva Bussarakons, marketing director for IR's HiRel DC-DC converter products.

The radiation-tolerant ProASIC3 FPGA from the Microsemi SoC Products Group is well suited to and employed in a variety of aerospace applications.
The radiation-tolerant ProASIC3 FPGA from the Microsemi SoC Products Group is well suited to and employed in a variety of aerospace applications.

Powerful prospects

"A reliable, ongoing power supply is essential to a space mission's success," a European Space Agency (ESA) spokesperson says. Power electronics, such as power conditioning and power conversion devices, can also help prevent harmful current surges and switch voltages.

International Rectifier power supplies are being used in low Earth orbit (LEO) and geosynchronous (GEO) satellite applications. "Radiation-hardened parts are required in most GEO satellites," explains Michael Sullivan, director of marketing at International Rectifier. "In LEO satellites, the radiation often can move into radiation tolerance levels due to the location of the orbit and the duration of flight.

"In spacecraft, both radiation-hardened and radiation-tolerant are used," Sullivan adds. "IR continues to develop new radiation-hardened devices for the space market as the number of satellites continues to grow both in size and in number."

Aeroflex RAD in Colorado Springs, Colo., uses an "Intellectual Property Liberation" (IP Lib) model for delivering radiation-tolerant electronics for satellites systems, describes Joseph Benedetto, vice president, Radiation Technology at Aeroflex RAD. Aeroflex RAD partnered with Linear Technology Corp., also in Colorado Springs, to manufacture the RAD-1419, a radiation-tolerant analog-to-digital (A/D) converter that uses the Linear Technology LTC1419, an A/D converter that draws 150mW from ±5-volt supplies. "By partnering with Linear Technology and using the IP Lib model, Aeroflex RAD was able to introduce this product to the satellite community in a fraction of the time and at a fraction of the cost of traditional radiation-hardened components," Benedetto says.

The RAD-1419 radiation-tolerant analog-to-digital (A/D) converter from Aeroflex RAD incorporates the Linear Technology LTC1419 A/D converter.
The RAD-1419 radiation-tolerant analog-to-digital (A/D) converter from Aeroflex RAD incorporates the Linear Technology LTC1419 A/D converter.

COTS considerations

Aerospace and defense organiza- tions continue to invest in, and benefit from, commercial off-the-shelf (COTS) technologies and products.

"To reduce weight and component cost, distributed power systems are relying more on smaller, less expensive point of load (POL) converters used in conjunction with the larger, traditional, isolated DC-DC converters," says Monty Pyle, executive director of sales at VPT, says. "We've been asked for a higher current option without the need to waste space and weight stringing together multiple POL converters."

VPT Inc., part of the HEICO Electronic Technologies Group and located in Bothell, Wa., provides off-the-shelf solutions, such as DC-DC power converters and EMI filters, for space applications and customers, including NASA. VPT engineers designed and manufactured the company's SVGA0515 Series point of load DC-DC converter for use in the extreme environment of space and to save board space, weight, and cost for power systems headed for LEO, MEO (medium Earth orbit), GEO, and deep space missions.

VPT added the SVGA0515 15-amp, radiation-hardened device to its line of space DC-DC converters. The new offering delivers up to 50 watts of output power and is qualified to MIL-PRF-38534 Class H and Class K, specifications set by the Defense Logistics Agency. SVGA0515 is "packaged in hermetically sealed metal cases for reliable power delivery through the extreme temperature, shock, vibration, and radiation environments of space travel," reveals a representative.

Bright future

Aerospace engineers and technology providers will no doubt continue to advance the state of the art in space-based electronics. "There will continue to be a need in the Aerospace industry for rad-hard and rad-tolerant components and systems in the future," Aeroflex Colorado Springs' Gonsalves predicts.


Radiation mitigation

Mentor Graphics Corp. personnel in Wilsonville, Ore., developed the company's Precision Rad-Tolerant FPGA design solution for aerospace and high-reliability applications with guidance from NASA.

Mentor's synthesis-based, radiation effects mitigation solution addresses "the critical need for automated, FPGA vendor-independent methods of radiation effects mitigation," says a company spokesperson.

The Precision Rad-Tolerant product is designed to make it easier for designers to incorporate various radiation effects mitigation schemes, such as automated, multi-vendor, multi-mode Triple Modular Redundancy (TMR), and to help reduce the risk of functionality problems, such as soft errors caused by single event upset and single event transient disruptions.

Precision Rad-Tolerant features the synthesis-based insertion of fault-tolerant finite state machines (FSM).

"The resulting FSM can 'absorb' radiation-induced single event upsets, mitigating their effect rather than switching the state machine into an unknown or unpredictable state," the spokesperson adds. "This form of safeguard meets the needs of a wide range of high-reliability applications."


COMPANY INFO

3D Plus

3d-plus.com
Aeroflex RAD
aeroflex.com
Aitech Defense Ssytems
rugged.com
ASIC Advantage
asicadvantage.com
Atmel
atmel.com
BAE Systems Electronic Solutions
baesystems.com
Cadence Design Systems
cadence.com
C-MAC Micro Technology
cmac.com
Crane Interpoint
interpoint.com
Curtiss-Wright Controls Embedded Computing
cwcembedded.com
Cypress Semiconductor
cypress.com
Freescale Semiconductor
freescale.com
Harris
harris.com
HDL Research Lab
hdlresearchlab.com
Honeywell
honeywell.com
Honeywell Microelectronics and Precision Sensors honeywellmicro
electronics.com
International Rectifier
irf.com
Intersil Corp.
intersil.com
Linear Technology Corp.
linear.com
Maxwell Technologies
maxwell.com
Mentor Graphics
mentor.com
Meggitt Sensing Systems
meggittsensingsystems.com
Microelectronics Research Development Corp.
micro-rdc.com
Micropac Industries
micropac.com
Microsemi Corp.
actel.com
Modular Devices
mdipower.com
MS Kennedy
mskennedy.com
Northrop Grumman Aerospace Systems
northropgrumman.com
Peregrine Semiconductor
psemi.com
Radiation Assured Devices
radiationassureddevices.com
Rochester Electronics
rocelec.com
Semicoa
semicoa.com
Space Micro
spacemicro.com
STMicroelectronics
st.com
Synova
synova.com
Teledyne Microelectronic Technologies
teledynemicro.com
Tezzaron Semiconductor
tezzaron.com
Texas Instruments
ti.com
TRAD
trad.fr
Triad Semiconductor
triadsemi.com
Ultra Communications
ultracomm-inc.com
VPT Inc.
vpt-inc.com
Xilinx
xilinx.com

More Military & Aerospace Electronics Current Issue Articles
More Military & Aerospace Electronics Archives Issue Articles




Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:


  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles


Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:


  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

Flexible Printed Circuit Board

Flexible Printed Circuit Boards are one of the most popular types of circuit boards used in a var...

Rigid Printed Circuit Boards

Rigid printed circuit boards can only meet diverse industrial applications if the best materials ...

Printed Circuit Board Assembly

Printed Circuit Board Assembly (PCB ASSY) is as critical a process as circuit board manufacturing.

Micro Borescope Ultra Thin

German made, it is the best choice for extremely small inspection areas, with diameters as small ...

XPand6020 | Small Form Factor (SFF) System Featuring XPedite5205 Running Cisco IOS® and XPedite7450

The XPand6020 is a Small Form Factor (SFF) system that features an XPedite5205, which runs Cisco ...

XCalibur4540 | 5th Generation Intel® Core™ i7 Broadwell-H Processor-Based Conduction- or Air-Cooled 6U VPX Module

The XCalibur4540 is a high-performance, 6U OpenVPX™, multiprocessing, single board computer that ...

XPand1200 | 3U VPX Development Platform for Conduction-Cooled Modules

The XPand1200 is a low-cost, flexible, development platform. This platform supports up to ten 0.8...

XPand1400 Series | Development Platform For XPand6000 Series, X-ES COM Express® Modules, and PMC/XMC Modules

The XPand1400 Series COM Express Development Platform targets the X-ES Small Form Factor (SFF) XP...

XPand1201 | 3U CompactPCI Development Platform for Conduction-Cooled Modules

The XPand1201 is a low-cost, flexible, development platform. This platform supports up to ten 0.8...

XPort5005 | XMC Form Factor PCIe Mini Card Carrier Board

The XPort5005 is an XMC module that can be quickly configured to support a platform’s specific I/...

Related Companies

Uniforce Sales and Engineering

Provides solutions to machine vision and image acquisition in many applications, including in the fields of medical, ...

A-FLEX

Provides customized Printed Circuit Board fabrication in California. The entire process can be customized according t...

TASC Technical & Assembly Services Corporation Electronic Equipment Manufacturing

Electronic Manufacturing sub-contractor. Circuit Board assembly, Cable Assembly, Wire Harness Assembly, Box Build Ass...

DDC-I Inc

Offers complete solutions for embedded software developers with a focus on mission- and safety-critical applications....

DiCon Fiberoptics Inc

Offers fiber optic switches, tunable filters, and VOAs. Founded in 1986, the company is a US based, AS9100 certified,...

Curtiss-Wright Defense Solutions

About Curtiss-Wright Defense Solutions Curtiss-Wright Defense Solutions (CWDS) is a long established techno...

United Electronic Industries Inc

UEI is a leader in the PC/Ethernet data acquisition and control, Data Logger/Recorder and Programmable Automation Con...

Harris Corporation

Harris provides advanced, technology-based solutions that solve government and commercial customers' mission critical...

Crane Aerospace & Electronics

When failure is NOT an option...rely on Crane Aerospace & Electronics. We supply high-density, high-reliability c...

A'n D Cable Products Inc

A'n D Cable Provides Data Center Racks, Cabinets, Zero U Rack Management including cable management, copper Cat5E/Cat...
Wire News provided by   

Press Releases

Model INCX-4001

The INCX-4001 consists of a high quality audio transceiver specifically designed to implement a complete fiber optic intercom.

Model PS-1210

The PS-1210 is a 1A, 12VDC stand-alone or rack mountable non-switcher (no RF noise) power supply.

Model OS-3121

Optical switches are utilized to disconnect, bypass and reroute fiber optic communications. All of these optical switches are purely optical path, there is no optical to e...

Webcasts

New Design Tools That Help You Develop Radar That Sees the Un-seeable and Detects the Undetectable

Xilinx EW/ISR System Architect, Luke Miller, has new tricks and he’s going to tell you all about them in a new Xilinx Webinar—for free. His Webinar will cover new ways to implement Radar functions including ...
Sponsored by:

All Access Sponsors


Mil & Aero Magazine

June 2015
Volume 26, Issue 6
file

Download Our Apps



iPhone

iPad

Android

Follow Us On...



Newsletters

Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information
SUBSCRIBE

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities
SUBSCRIBE

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers
SUBSCRIBE

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.
SUBSCRIBE

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications
SUBSCRIBE

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles
SUBSCRIBE