Graphics and video processing advancing quickly because of networking and GPU enabling technologies

Embedded computing capability to process graphics quickly and efficiently is more important for aerospace and defense applications today than ever before. Moving maps, imaging sensors, and icon overlays on maps and images are only a few of the applications driving graphics-processing boards for military uses.

In a happy coincidence, moreover, the ability to process graphics-particularly for demanding military and aerospace applications-is easier and more accessible today than it ever has been in the past, thanks to commodity graphics-processing chips and accompanying software that makes once-complex graphics applications nearly as easy to program as C software code.

"About 2002 was the first floating-point graphics processing unit (GPU)," explains Scott Thieret, technology director at Mercury Computer Systems in Chelmsford, Mass. "The paradigm was complex. We needed to use DirectX under Windows, and write GPU shaders. That was challenging, but the performance in gigaflops and memory bandwidth was compelling."

Fast-forward to 2007, however, when graphics processing expert NVIDIA Corp. in Santa Clara, Calif., came out with a graphics programming language called Compute Unified Device Architecture, better-known as CUDA, which "completely changed the way GPUs could be programmed," Thieret says. "Instead of writing Assembly language, which shaders were, CUDA was a paradigm shift. CUDA as a programming language looks very much like C."

The Mercury Computer Systems GSC6201 board, shown above, makes use of general-purpose processors (GPUs).
The Mercury Computer Systems GSC6201 board, shown above, makes use of general-purpose processors (GPUs).

So put GPUs from NVIDIA together with the CUDA graphics-processing language, and all of a sudden complex graphics applications were within the reach of embedded systems-particularly for aerospace and defense applications. The only drawback to CUDA, however, is the language is specific to NVIDIA processors.

Today, however, programming GPUs has become even easier than it was with CUDA with the creation of the Open CL standard, which is similar to CUDA, but is not specific to NVIDIA GPUs. "Our customers are asking more and more for Open CL because it runs on everything, and is a much better software-portability story," Thieret says.

Still, the GPU is not the only enabling technology behind today's generation of advanced video and image-processing applications.

Advanced networking and networking switches also are making complex graphics applications accessible to a growing number of systems designers.

"We're really all about doing things with video," says Andrew Hipperson, business development director for the video and display solutions group of Curtiss-Wright Controls Defense Solutions in Letchworth, England.

Curtiss-Wright makes a video system for surveillance helicopters that enables air crews to watch moving images from several onboard cameras on one display, which can be replicated on displays located throughout the aircraft.

"We're dealing with high-definition video and platforms with a lot more high-definition sensors than we used to," Hipperson explains. "We have a lot of high-bandwidth video data. It can be a horrifically complicated scenario."

One of the chief enabling technologies, Hipperson explains, is networking. "One of the technologies in the whole video-management system is basically a switch," he says. "It transfers video over gigabit Ethernet and wireless links, and this drives a lot of the technology."

This kind of networking enables systems designers not only to stitch together imagery from many different sensors on one video screen, but also to add more sensors later with minimal increase in onboard wiring to save space and weight.

The GPU, however, still is creating substantial buzz in the aerospace and defense community. "The biggest thing we have has almost 400 cameras on one platform," explains Dustin Franklin, GPGPU applications engineer at GE Intelligent Platforms in Charlottesville, Va.

This persistent-surveillance system combines images from all these cameras into one image with moving target indicators and other high-level algorithms. "The amount of pixels we are processing is in the gigapixel range," Franklin says. "Swimming in sensors and drowning in data. This is our answer to that problem."

Think of it. Billions of image pixels that must be processed at the same time. It's a massively parallel processing challenge, which the modern GPU is designed specifically to tackle.

"Compared to the CPU [central processing unit], the GPU excels at massively parallel applications that have thousands of tasks you want done at the same time," Franklin says. "GPUs can switch between processing threads with zero overhead."

For graphics processing, the more pixels processed in parallel, the better. Still, the GPU's utility extends beyond graphics processing. Aerospace and defense systems designers are applying GPUs to massive processing tasks, such as radar processing, electronic warfare, and signals intelligence.

Almost anything that requires parallel processing can benefit from the GPU-and now with steadily increasing performance and ease of programming.

"A radar system might have a coherent processing interval that might be as large as 650 megabytes of data," Mercury's Thieret says. "You need to stream that large chunk of data through the processor as quickly as you can. With GPUs you can do many more floating-point operations per clock cycle than you can with an X86-type of processor."


AAEON Electronics Inc.
ADLINK Technology
Aspen Systems Inc.
Asus Computer International Inc.
Avitech International Corp.
Barco Inc.
Cavium Networks
Curtiss-Wright Controls Defense Solutions
Emerson Network Power Embedded Computing
Galaxy Microsystems
GE Intelligent Platforms
General Digital Corp.
Giga-Byte Technology Co., Ltd.
Matrox Graphics Inc.
Mercury Computer Systems
MSI Computer Corp.
Parvus Corp.
Quantum3D Inc.
RadiSys Corp.
RTD Embedded Technologies Inc.
Sensoray Co.
SMART Modular Technologies Inc.
VersaLogic Corp.
WinSystems Inc.

More Military & Aerospace Electronics Current Issue Articles
More Military & Aerospace Electronics Archives Issue Articles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

Printed Circuit Board Assembly

Printed Circuit Board Assembly (PCB ASSY) is as critical a process as circuit board manufacturing.

XPand6020 | Small Form Factor (SFF) System Featuring XPedite5205 Running Cisco IOS® and XPedite7450

The XPand6020 is a Small Form Factor (SFF) system that features an XPedite5205, which runs Cisco ...

General Micro "Horizon" C299

The C299 Horizon is a third generation, 6U cPCI SBC module based on GMS’ upgradable CPU technolog...

RR2P Removable Canister RAID System

Transportable data storage for mobile field use aboard planes, ships and ground transport. 2U, du...

General Micro "Atom" XPC40X Rugged, Ultra-Small, Ultra-Low-Power Intel Atom™ CPU SBC

The XPC40X Atom is a rugged, low cost, ultra-low power, lightweight, Atom™ based computer system....

General Micro's VS295 Eclipse

The VS295 Eclipse is fifth generation, VME SBC module based on GMS, upgradable CPU technology. It...

DSP280 - Rugged Dual Socket 2nd Gen Intel Quad Core i7 Multiprocessor

The DSP280 is a rugged, 6U OpenVPX dual socket Intel 2nd generation Quad Core i7 multiprocessor d...

ADEPT3000 Automatic Video Tracker

GE Intelligent Platforms ADEPT3000 is a cost-effective SWaP optimized automatic video tracking so...

6U OpenVPX HPEC Starter System

GE Intellligent Platforms new HPEC Application Ready Platforms (HARP) products respond to governm...

XCalibur4530 4th generation Intel Core i7 processor-based 6U VME module

The XCalibur4530 is a high-performance 6U VME single board computer that is ideal for ruggedized ...

Related Companies

DiCon Fiberoptics Inc

Offers fiber optic switches, tunable filters, and VOAs. Founded in 1986, the company is a US based, AS9100 certified,...

Curtiss-Wright Defense Solutions

About Curtiss-Wright Defense Solutions Curtiss-Wright Defense Solutions (CWDS) is a long established techno...

Harris Corporation

Harris provides advanced, technology-based solutions that solve government and commercial customers' mission critical...

Innovative Integration

  Since 1988, Innovative Integration has grown to become one of the world's leading suppliers of DSP and data ac...

General Micro Systems Inc

Since 1979, General Micro Systems has been providing the most diverse line of single-board computers in the industry....

Winchester Systems Inc

At its founding in 1981, Winchester Systems introduced its first 5 MB disk system for Intel development system users....

Extreme Engineering Solutions Inc (X-ES)

 Extreme Engineering Solutions, Inc. (X-ES) is a leader in the design, manufacture, and support of standard and ...


Provides a lightweight, compact aluminum connector. M-series connector is focused on the design that requires a MIL-3...

GE Intelligent Platforms

Provides embedded computing solutions. Products include single-board computers, networking products, avionics interfa...

Omnetics Connector Corp

Omnetics Connector Company is a privately held, world class connector design and manufacturing company with over 25 ...
Wire News provided by   

Press Releases

Model INCX-4001

The INCX-4001 consists of a high quality audio transceiver specifically designed to implement a complete fiber optic intercom.

Model PS-1210

The PS-1210 is a 1A, 12VDC stand-alone or rack mountable non-switcher (no RF noise) power supply.

Model OS-3121

Optical switches are utilized to disconnect, bypass and reroute fiber optic communications. All of these optical switches are purely optical path, there is no optical to e...


New Design Tools That Help You Develop Radar That Sees the Un-seeable and Detects the Undetectable

Xilinx EW/ISR System Architect, Luke Miller, has new tricks and he’s going to tell you all about them in a new Xilinx Webinar—for free. His Webinar will cover new ways to implement Radar functions including ...
Sponsored by:

All Access Sponsors

Mil & Aero Magazine

June 2015
Volume 26, Issue 6

Download Our Apps




Follow Us On...


Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles