The unseen airport killer: NASA works to mitigate the potentially deadly effects of wake vortex turbulence

HAMPTON, Va.-It has been a silent and unseen airport killer that can cause aircraft on takeoff and landing to hit sudden and violent turbulence and slam the aircraft into the ground before pilots have time to take evasive action.

It's called wake vortex turbulence, and is particularly a threat to relatively small aircraft operating in close proximity to large airliners and jumbo jets. Although the phenomenon is invisible to the human eye, researchers at NASA are trying to improve airport defenses against the potential deadly effects of wake vortex turbulence.

The cause of this violent force is powerful air currents that swirl backward and outward from the wings of flying aircraft. Among the most dangerous times are when aircraft are lifting off from the runway or on short final approach to the airport.

If a smaller aircraft follows too closely behind, that powerful swirling air can hit it with such force that it causes the pilot to lose control, or even flip the aircraft over too closely to the ground for its crew to recover quickly enough before a crash.

On 30 May 1972, Delta Air Lines flight 9570, a DC-9 narrow-body jetliner, crashed at the Greater Southwest International Airport in Fort Worth, Texas, while performing touch-and-go landings behind a much-larger DC-10 widebody.

This photo illustrates the force of wake vortex turbulence when air swirls off the wingtips of flying aircraft.
This photo illustrates the force of wake vortex turbulence when air swirls off the wingtips of flying aircraft.

The DC-9, which was landing behind the heavy DC-10, started to roll uncontrollably on short-final approach and struck the runway with its right wing, destroying the aircraft and killing the four people aboard. Investigators said wake vortex turbulence from the DC-10 caused the crash; as a result, the FAA created new rules for minimum following separation from large aircraft.

Years later on 15 Dec. 1993, a chartered business jet crashed and killed In-N-Out Burger President Rich Snyder and four others aboard while on approach to John Wayne Airport in Orange County, Calif. The small jet, which had been caught in wake vortex turbulence while following a Boeing 757 jetliner, rolled into a deep descent and crashed.

One of the most spectacular wake vortex turbulence aviation disasters in history happened in the New York area on 12 Nov. 2001-just two months after the 9-11 terrorist attack-when American Airlines flight 587, an Airbus A300, crashed into the Belle Harbor neighborhood of Queens, N.Y., shortly after taking off from John F. Kennedy International Airport.

Investigators ruled pilot error as the primary cause of the crash when flight 587's pilot flew too closely to the wake turbulence of a Japan Airlines Boeing 747 heavy jet. The violent turbulence from the 747 tore the tail off American 587, investigators said, after crew members over-compensated with the jet's rudder to escape the sudden turbulence.

Researchers from the U.S. National Aeronautics and Space Administration (NASA) Langley Research Center in Hampton, Va., are working together with atmospheric experts from Aerospace Innovations in Yorktown, Va., to develop technology that will give pilots a fighting chance against the effects of wake vortex turbulence. NASA Langley awarded Aerospace Innovations a $605,730 contract for the Atmospheric Environment Safety Technologies (AEST) project, which will investigate sources of atmospheric flight hazards like wake vortex turbulence and provide technologies to avoid or mitigate them.

The AEST project supports wake vortex research through the NASA Atmospheric Hazard Sensing & Mitigation program, which seeks to detect and understand wake vortex behavior to provide for safer runway operations, and help aircraft avoid in-flight turbulence. Results of this project may lead to improved airport sensors to give pilots early detection and awareness of potentially dangerous wake vortex turbulence.

FOR MORE INFORMATION visit Aero- space Innovations at www.ai-llc.com.


Easily post a comment below using your Linkedin, Twitter, Google or Facebook account.


The Innovation That Matters™ Quiz

Innovation is one of the key drivers in the Defense industry. View this short video of Leon Woo, VP of Engineering at Mercury Systems, on the role of innovation. Then, answer 3 simple questions correctly to be entered into a drawing to win an Eddie Bauer fleece jacket!

CONGRATULATIONS TO OUR TWO MOST RECENT WINNERS. "Nick from SPARWAR" and "Bridget from AOC."


Featured Slideshow

Evolution of the American soldier

The American soldier has come a long way since the beginning of the Republic 237 years ago. While uniforms for early soldiers were based on cost and utility, soldiers' clothing eventually considered ballistic protection, increasing storage space, protection from poison gas and other contaminants.

Related Products

F-SIM-LDR ARINC 615A Data Loader

AIT's F-SIM-LDR, or Flight Simulyzer Loader, is a complete ARINC-615A Data Loader development kit...

cPCI-1760-SW-4

AceXtreme® Bridge Device - Smart Protocol Converter

DDC’s AceXtreme Bridge Device converts avionics messages in real time between Ethernet, MIL-STD-1...

Related Companies

CES - Creative Electronic Systems SA

Has been designing and manufacturing complex high-performance avionics, defense and communication boards, subsystems ...

Boker's Inc

Boker's, Inc. can manufacture your flat washers, spacers and shims with an outside diameter from 0.080" to 12" and ma...

DLS Electronic Systems Inc

Provides EMC/EMI & Environmental testing to MIL-STD 461-A-F, MIL-STD 810 & RTCA DO-160-C-G, Boeing, Airbus FAA AC20-1...
Wire News provided by   

Most Popular Articles

Webcasts

On Demand Webcasts

Engineering the VPX high-speed data path for physical and signal integrity

Join Arrow Electronics and TE Connectivity, for an overview webinar of the standards, technologies and trends involving VITA and TE.

Design Strategy Considerations for DO-178C Certified Multi-core Systems

Join Wind River to learn how system architecture and design choices can minimize your DO-178C certification challenges.

Sponsored by:

Flying, Sailing or Driving - The Rugged, Embedded Intel-based Server that goes where you need it!Flying Sailing or Driving

Leveraging the power of server-class processors is no longer relegated to the confines of data centers. Through several innovations, Mercury Systems has ruggedized Intel’s server-class chips for deployment. ...
Sponsored by:

social activity

All Access Sponsors


Mil & Aero Magazine

February 2014
Volume 25, Issue 2
file

Download Our Apps



iPhone

iPad

Android

Follow Us On...



Newsletters

Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information
SUBSCRIBE

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers
SUBSCRIBE

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications
SUBSCRIBE

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles
SUBSCRIBE