IBM researchers to design liquid cooling directly into microchip designs and packaging

ARLINGTON, Va., 8 April 2013. Microelectronics experts at IBM Corp. in Armonk, N.Y., are taking the first steps in a U.S. military research program in electronics thermal management that seeks to design convective or evaporative microfluidic cooling directly into microchip designs and packaging.

IBM won a $5 million contract last Thursday from the U.S. Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., for the Intrachip/Interchip Enhanced Cooling (ICECool) Fundamentals program, which is the first step in the DARPA ICECool program, and will develop the fundamental building blocks of intra- and interchip evaporative microfluidic cooling.

IBM microelectronics thermal management experts will explore revolutionary new thermal-management technologies for military electronics to help designers make substantial reductions in size, weight, and power consumption (SWaP).

DARPA scientists are asking IBM to find ways to shrink chip-cooling technologies such that they can build cooling into the chip itself. The goal is to close the gap between chip and chip-cooling technologies for military electronics like computers, RF transceivers, and solid-state lasers.

IBM leads the first of what eventually may involve several industry teams working on different substrates and on different thermal-management approaches. Resulting technologies are expected to feed into future efforts within the ICECool thermal management program.

While IBM researchers are handling the first phase of the DARPA ICECool program, which is to develop fundamental technological building blocks for on-chip built-in liquid cooling, DARPA released a formal solicitation last February for the next phase ICECool program phase.

The February solicitation involves the ICECool Applications program, which seeks to demonstrate advanced electronics cooling techniques for high-performance embedded computing (HPEC) and RF monolithic microwave integrated circuit (MMIC) power amplifiers with convective or evaporative microfluidic cooling built directly into the electronic devices and packaging.

The first ICECool Fundamentals solicitation went out to industry in June 2012, and IBM is the first company involved in this phase. No contracts for the next phase, ICECool Applications, have been awarded yet.

In the first phase of the DARPA ICECool program IBM researchers will try to alleviate cooling limitations of advanced military electronics by integrating thermal management techniques into the chip layout, substrate structure, and package design, not only to shrink on-chip cooling, but also to enhance overall electronics performance.

Essentially, IBM experts are seeking to make cooling just as important as any other aspect of chip design, and use embedded thermal management to enhance the performance of military electronics. Integrating chips with convective or evaporative microfluidic cooling, DARPA officials say, has the potential to speed the evolution of advanced chip integration, DARPA officials say.

Specifically, IBM researchers will try to demonstrate chip-level heat removal in excess of 1 kilowatt per square centimeter heat flux, as well as 1 kilowatt per cubic centimeter heat density with thermal control of local submillimeter hot spots with heat flux exceeding 5 kilowatts per square centimeter.

IBM will develop microfabrication techniques over two or three years to implement thermal interconnects and evaporative microfluidics in several microchanneled semiconductor chips. DARPA also may as IBM to model intrachip cooling with evaporative flows in microchannel flow loops -- either within the chips themselves, or in the microgaps between chips in 3D chip stacks.

One fundamental problem that the ICECool program seeks to solve is the large size and weight of cooling subsystems. Ever-smaller chip geometries generate increasing amounts of heat, and the ability to cool electronics is moving more slowly than the ability to shrink chip densities.

This causes some advanced electronics to perform well below the inherent electrical limits of the device technology. Integrating cooling directly into the chip could transform electronic systems architectures and overcome the SWaP bottleneck in advanced electronics, DARPA officials say.

The ICECool program will complement other DARPA thermal-management initiatives, such as the Thermal Ground Plane (TGP) program to develop modern high-performance heat spreaders to replace the copper alloy spreaders in conventional systems; the Microtechnologies for Air Cooled Exchangers (MACE) program to develop enhanced heatsinks that reduce the thermal resistance and power requirements for cooling fans; and the Active Cooling Module (ACM) program to develop miniature, active, high-efficiency refrigeration systems based on thermoelectric or vapor-compression technologies.

For more information contact the DARPA Microelectronics Technology Office (MTO) online at, or IBM at

Get All the Military Aerospace Electronics News Delivered to Your Inbox or Your Mailbox

Subscribe to Military Aerospace Electronics Magazine or email newsletter today at no cost and receive the latest information on:

  • C4ISR
  • Cyber Security
  • Embedded Computing
  • Unmanned Vehicles

Military & Aerospace Photos

Most Popular Articles

Related Products

Omnetics Nano-D Bi-Lobe® Latching Connectors

Bi-Lobe® connectors utilize rugged and reliable flex pin contact system. Spaced on 25 mil (.64mm)...

Nano-D Bi-Lobes® Connectors Dual Row Horizontal SMT (Type AA)

Horizontal SMT Bi-Lobe® nanos offer an extremely low profile package that is well suited to pick ...

Nano-D BiLobe® Connectors -(COTS)

Sizes are 9, 15, 21, 25, 31, 37 , 51 & 65 pin, at .025 Mil. Pitch(Currently Available), mating pi...

Latching Micro-D Connectors

Omnetics high reliability Micro-D connectors are available with Quick Latch System. For applicati...

Hybrid Micro-D Connectors

Omnetics high reliability Micro-D connectors are available withmixed power/signal contact layouts...

Micro-D Connectors

Highly rugged and compact designs in shell styles from 9 to 51 contacts. The Micro-D connectors i...

XTend7103 | COM Express® Carrier for COM Express® Type 10 Mezzanine Modules

The XTend7103 is a COM Express® carrier card designed to provide a low-cost and compact platform ...

3515 Series Portable Radio Communications Test Set

The 3515 is a first-line radio test set designed to verify that portable radios, man-pack radios,...

7200 Configurable Automated Test Set

The 7200 is a complete radio test system in one small and portable package and even includes a Mi...

ALT-8015 FMCW/Military Pulse Radio Altimeter Test Set

The ALT-8015 Radio Altimeter Flightline Test Set provides an easily configurable RF based altitud...

Related Companies

Curtiss-Wright Defense Solutions

About Curtiss-Wright Defense Solutions Curtiss-Wright Defense Solutions (CWDS) is a long established techno...

United Electronic Industries Inc

UEI is a leader in the PC/Ethernet data acquisition and control, Data Logger/Recorder and Programmable Automation Con...

Lumetrics Inc

Is a nondestructive metrology solutions provider for industries as diverse as aerospace, medical, ophthalmic, glass, ...

Cobham AvComm (formerly Aeroflex Test Solutions)

Is a global leader in avionics, communications, and synthetic test, monitoring, and control for commercial, governmen...

GE Aviation Systems

Designs and manufactures high reliability microelectronics for aerospace and military applications. Thick film hybrid...

Astronics Ballard Technology

Manufactures avionics databus interfaces, embedded computers, and software for aerospace, military and commercial use...

Henniker Plasma

Plasma Treatment Equipment - Plasma Cleaners, Plasma Etchers, Plasma Coating & Plasma Surface ModificationWe are the ...

InnovaQuartz LLC

Manufacturer of fiber-optic assemblies for spectroscopy and high-energy delivery with patented and proprietary techno...

TLC International

Manufactures Gen-3 TLC Phoenix-600 and Gen-5 TLC Summit high-accuracy glass cutting machines that utilize carbide/dia...

Components Technology Institute Inc

Provides components engineering, reliability assessment, counterfeit avoidance, expert witness testimony and componen...


The Intel Xeon-D processor and its role in high-performance embedded computing (HPEC)

The rugged Intel Xeon-D server-class multicore microprocessor is set to revolutionize high-performance embedded computing. By itself, the processor will bring unprecedented power to embedded computing applic...

Harsh Environment Protection for Advanced Electronics and Components

This webinar will offer an opportunity to learn more about ultra-thin Parylene conformal coatings – how they are applied, applications they protect today, and the properties and benefits they offer, includin...

Press Releases


Curtiss-Wright Corporation today announced that its Defense Solutions division has received a contract from Sierra Nevada Corporation (SNC) to supply its small form factor ...

Innovative Integration Announces the FMC-Servo

Camarillo, CA June 19, 2015, Innovative Integration, a trusted supplier of signal processing and data acquisition hardware and software solutions, today announced the FMC-S...


Curtiss-Wright Corporation today announced that its Defense Solutions division has further enhanced its innovative VRD1 high definition (HD) video management system (VMS) w...

All Access Sponsors

Mil & Aero Magazine

August 2015
Volume 26, Issue 8

Download Our Apps




Follow Us On...


Military & Aerospace Electronics

Weekly newsletter covering technical content, breaking news and product information

Cyber Security

Monthly newsletter covering cyber warfare, cyber security, information warfare, and information security technologies, products, contracts, and procurement opportunities

Defense Executive

Monthly newsletter covering business news and strategic insights for executive managers

Electronic Warfare

Quarterly newsletter covering technologies and applications in electronic warfare, cyber warfare, optical warfare, and spectrum warfare.

Embedded Computing Report

Monthly newsletter covering news on embedded computing in aerospace, defense and industrial-rugged applications

Unmanned Vehicles

Monthly newsletter covering news updates for designers of unmanned vehicles