Future unmanned underwater vehicles with machine autonomy for deep-sea missions are focus of DARPA Angler program

Jan. 14, 2019
ARLINGTON, Va. – U.S. Military researchers are asking the defense industry to develop a deep-diving unmanned underwater vehicle (UUV) and control system able to find and manipulate objects in deep-ocean environments.
ARLINGTON, Va. – U.S. Military researchers are asking the defense industry to develop a deep-diving unmanned underwater vehicle (UUV) and control system able to find and manipulate objects in deep-ocean environments.

Officials of the U.S. Defense Advanced Research Projects Agency (DARPA) issued a broad agency announcement on Friday (HR001119S0009) for the Angler project (not an acronym) for new capabilities in autonomous exploration and manipulation on the seafloor.

The deep ocean remains one of the most challenging earth-bound domains, despite breakthroughs in terrestrial robotics, space robotics, and underwater sensing, DARPA scientists explain.

While the seafloor often is gently sloping sand dunes, it also has natural and man-made obstacles that complicate search and navigation tasks. Reefs, submarine vents, and fissures can be treacherous, and can change quickly. This represents a major challenge to classical perception techniques, which rely on feature recognition.

Related: Undersea company that found Air France 447 black boxes buys unmanned underwater vehicle (UUV) from Bluefin Robotics

Deep-sea missions also require continuous operation over thousands of miles without the aid of Global Positioning System (GPS) localization or human communication or cognition, which imposes substantial autonomy requirements on an already complex system.

The DARPA Angler project has two thrusts. First it seeks to develop an autonomous undersea control system that processes mission commands and sensor inputs, understands the seabed and provides control inputs to unmanned vehicles to complete physical manipulation objectives on the seafloor.

Second, the project seeks to design an underwater robot to navigate the seafloor and physically manipulate objects in deep- ocean environments.

Manipulating objects underwater is more difficult than it sounds. Seawater, for example, may be murky enough to complicate perception, search, object recognition, and estimation. Man-made objects also may be deteriorated, slippery, partially covered.

Related: UUVs to benefit undersea combat forces

For these reasons, underwater manipulation is difficult enough using teleoperation with the aid of human operators; it's even harder with vision systems and machine autonomy mixed-in.

Underwater manipulation today typically happens with remotely operated vehicles (ROVs) tethered to a surface vessel, and tele-operated by a human pilot. This can limit their utility because ROVs cannot extend beyond their tethers, and need several operators.

Wireless communications for sub-sea teleoperations, moreover, largely is impractical because seawater attenuates electromagnetic wave propagation and available bandwidth.

Instead, DARPA researchers want industry to develop the Angler robotic system capable of long-distance underwater manipulation missions. It will operate autonomously and without external communication to navigate, search, localize, and physically manipulate objects on or near the seabed, using onboard sensors to self-localize, avoid obstacles, interact with the seabed, and manipulate objects. It also will be able to search for and manipulate deep undersea objects in dark or murky water.

story continues below

Chief enabling technologies for this project will involve manipulation and autonomy in underwater robotics, DARPA researchers say. Eventually these technologies may move to an operational military system.

DARPA researchers expect the Angler program to capitalize on land-, space-, and floating-base robotics, terrestrial autonomous manipulation, and underwater sensing for long-distance, seabed-based missions.

The program aims to discover autonomous robotic solutions in sensing techniques for high-resolution navigation in GPS-deprived underwater environments; perception and manipulation for grasping degraded and malformed manmade objects; long-duration autonomy; and mission planning without human intervention.

The Angler program will fit an underwater robot with autonomy and control for several physical manipulation objectives in one long mission without human intervention. Proposers should focus on autonomy and decision support algorithm technologies to identify challenging objects and plan grasp those objects.

Related: Unmanned underwater vehicle (UUV) research pulls into the fast lane, led by ONR contracts

DARPA scientists want proposers to capitalize on existing hardware, software, simulation infrastructure, and physical interfaces as much as possible.

Capabilities of interest include long-duration machine autonomy; information fusion; object recognition; autonomous grasp planning; dynamic station keeping at or near the seabed; and sustained sprint capabilities to evade obstacles and traffic.

DARPA will chooses several contractors to work on separate aspects of the Angler program. Companies interested should submit abstracts no later than 30 Jan. 2019, and proposals no later than 23 March 2019, to the DARPA BAA Website at https://baa.darpa.mil.

Email questions or concerns to DARPA at [email protected]. More information is online at https://www.fbo.gov/spg/ODA/DARPA/CMO/HR001119S0009/listing.html.

Ready to make a purchase? Search the Military & Aerospace Electronics Buyer's Guide for companies, new products, press releases, and videos

Voice your opinion!

To join the conversation, and become an exclusive member of Military Aerospace, create an account today!