The first test site for ADS-B technology was Alaska under an FAA project called Capstone. According to an FAA release hundreds of general aviation aircraft were equipped with ADS-B avionics and ground-based infrastructure enabling pilots to see where they were in relation poor weather rough terrain. The fatal accident rate was cut nearly in half for the ADS-B equipped aircraft, according to the FAA release.ADS-B InADS-B In essentially will reduce the workload for controllers and the flight crew, Stone explains. It brings greater situational awareness to pilots than they have today by providing traffic information to the pilot's display updated continuously in real-time -- whether on a primary flight display or an electronic flight bag (EFB). "It does not eliminate the need for air traffic controllers," Stone emphasizes.Among the advantages of ADS-B In is helping to reduce aircraft fuel consumption and noise by enabling continuous-descent approaches, as opposed to the traditional stair-step downward approach to airports that aircraft take today, Stone says. During a stair-step approach to landing, aircraft alternately descend, and then level off by accelerating engine speed, which wastes aviation fuel and creates more noise.Air traffic control typically directs non-ADS-B aircraft to level out periodically so they can maintain their positions relative to other aircraft, Stone continues. With ADS-B In technology the flight crew can see their aircraft's position on their cockpit displays continually in relation to other aircraft, and can maintain separation without air traffic control assistance during continuous descents. This also will help reduce vectoring problems at airports, Stone adds.ADS-B In displaysStandards for displaying ADS-B In information on cockpit avionics or EFB are still being formulated, and as a result, companies designing ADS-B In solutions take different approaches, says Chad Cundiff, vice president of crew interface systems at Honeywell Aerospace in Phoenix. As of yet there is not an ADS-B In mandate from the FAA as there is for ADS-B Out, says Rockwell Collins's Evanschwartz.One of the things yet be determined is how to represent aircraft of different sizes and performance profiles on the cockpit display, Cundiff says. Each pilot also might have different preferences for how he much information he wants displayed on the screen, Evanschwartz says. Some operators may want to use EFBs for surface area moving map applications to keep the pilot’s eyes focused on the forward field of view, he adds.Each company is testing its receivers, transponders, data processing software, and avionics displays with airlines and airframers to see what will work and what the pilots themselves feel will be most efficient.ACSS and SafeRouteThe first commercial certification of ADS-B In technology involved cargo carrier United Parcel Service (UPS) and SafeRoute software tools from ACSS, Stone says. They integrated SafeRoute on six Boeing 757s and five 767s -- using SafeRoute software on EFBs from Astronautics in Milwaukee. "We plan to have the entire fleet [of 211 aircraft] equipped," says Mike Mangeot, a UPS spokesman. UPS has already tested merging and spacing applications as surface area moving maps (SAMM). UPS saved about 250,000 gallons of fuel a year by using ADS-B In, reduced engine emissions by 30 percent, and cut noise by 34 percent, Stone says.