Researchers eye competency-awareness and trusted computing in machine learning to link humans and machines

Feb. 21, 2019
ARLINGTON, Va. – How does a person know if he's smart enough to do the job ... if he has a skill set that's adequate for the task at hand? It sounds simple, but it's a fundamental ability necessary for trust and team building.
ARLINGTON, Va. – How does a person know if he's smart enough to do the job ... if he has a skill set that's adequate for the task at hand? It sounds simple, but it's a fundamental ability necessary for trust and team building.

Now apply the same question to artificial intelligence (AI) technology and machine learning? How does a machine know if it's smart enough to do the job? That's exactly what U.S. military researchers are aiming at in the Competency-Aware Machine Learning (CAML) project.

Officials of the Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., issued a broad agency announcement on Tuesday for the CAML project, which focuses on competency-awareness machine learning, where an autonomous system can self-assess its task competency and strategy, and express both in a human-understandable form.

This competency-awareness capability contributes to the goal of transforming autonomous systems from tools into trusted, collaborative partners, DARPA officials say. Competency-aware machine learning will enable machines to control their behaviors to match user expectations and enable human operators quickly and accurately to gain insight into a system’s competence in complex, time-critical, dynamic environments. CAML, in short, seeks to improve human-machine teaming.

Related: Carnegie Mellon joins HRL in artificial intelligence project to analyze images and text

State-of-the-art machine learning systems today operate in a complex space, and continuously develop behaviors based on their experiences. Nevertheless, these kinds of smart machines with trusted computing capabilities are unable to communicate their task strategies, the completeness of their training on a given task, what might influence their actions, or how likely they are to succeed under specific conditions.

Verifying a machine's competence increasingly is unrealistic for human operators. This can be a big problem for the military, where machines often deal with high-stake decisions, and must cope with dynamic, fast-changing conditions.

CAML seeks to improve human-machine teaming capabilities by creating a fundamentally new machine-learning approach, and help human operators choose the right smart machines based on the machines' experience and expertise.

CAML is a four-year program divided into a three-year research first phase, and a one-year technology-demonstration second phase. It focuses on four technology areas: self-knowledge or experience; self-knowledge of task strategies; competency-aware learning; and capability demonstrations.

Related: U.S. intelligence experts kick off KRNS program to unlock secrets in the nature of knowledge

Self-knowledge of Experiences will develop mechanisms for learning systems to discover conditions encountered during operation, and maintain a memory of experiences.

Self-knowledge of task strategies will enable a machine learning system to analyze its task behaviors, summarize them into generalized patterns, and identify what controls its behavior.

Competency-aware learning integrates component technologies into a competency-aware learning framework that is able to communicate in human-understandable statements. It will conclude with a demonstration on a proposer-provided platform.

Related: HRL to explore artificial intelligence for drawing hidden intelligence from images and text

Capability demonstrations will show competency-aware machine learning systems on military platforms.

Companies interested should upload abstracts no later than 6 March 2019, and full proposals by 22 April 2019, to the DARPA BAA Website at https://baa.darpa.mil.

Email questions or concerns to Jiangying Zhou, the DARPA CAML program manager, at [email protected]. More information is online at https://www.fbo.gov/spg/ODA/DARPA/CMO/HR001119S0030/listing.html.

Ready to make a purchase? Search the Military & Aerospace Electronics Buyer's Guide for companies, new products, press releases, and videos

About the Author

John Keller | Editor

John Keller is editor-in-chief of Military & Aerospace Electronics magazine, which provides extensive coverage and analysis of enabling electronic and optoelectronic technologies in military, space, and commercial aviation applications. A member of the Military & Aerospace Electronics staff since the magazine's founding in 1989, Mr. Keller took over as chief editor in 1995.

Voice your opinion!

To join the conversation, and become an exclusive member of Military Aerospace, create an account today!