BAE Systems to build additional advanced precision seekers for Lockheed Martin LRASM anti-ship missile

July 27, 2021
The seeker comprises long-range sensors and targeting to find and attack protected enemy ships amid attempts to jam or spoof the missile.

NASHUA, N.H. – Munitions guidance experts at the BAE Systems Electronic Systems segment in Nashua, N.H., will provide next-generation missile seekers for the Long Range Anti-Ship Missile (LRASM) under terms of a $117 million contract from Lockheed Martin Corp.

The seeker comprises long-range sensors and targeting technology that help the stealthy missile find and engage protected enemy ships amid attempts to jam or spoof the missile, BAE Systems officials say.

LRASM is for use against high-priority enemy targets like aircraft carriers, troop transport ships, and guided-missile cruisers. BAE Systems has delivered more than 50 LRASM seekers to date that have demonstrated technical performance over several tests.

Following design improvements conducted under a Diminishing Sources/Affordability contract, BAE Systems is producing next-generation seekers for LRASM lots four and five that are more capable and easier to produce, with less-complicated manufacturing processes. The next-generation seekers have replaced obsolescent and limited-availability parts to reduce system cost.

Related: Raytheon moves ahead with new guidance sensor and processor for anti-ship Tomahawk missile

The LRASM anti-ship missile contract will support missiles for the U.S. Navy, Air Force, and allies.

The BAE Systems LRASM seeker uses sensor fusion to blend information from the missile's on-board radar, semi-autonomous guidance, Global Positioning System (GPS) satellite navigation, high-speed secure tactical networking links, and nearby sensors to strike high-value targets from long range while avoiding shipboard missile counter-fire.

The missile guidance sensor uses semi-autonomous guidance and target cueing data to locate and attack targets precisely and reduce reliance on airborne intelligence, surveillance, and reconnaissance (ISR) aircraft, networking links, and GPS navigation.

BAE Systems designers also are working to make the seeker system smaller, more capable, and more efficient to produce. Building LRASM is the Lockheed Martin Missiles and Fire Control segment in Orlando, Fla. Lockheed Martin is in charge of LRASM overall development, and the BAE Systems is developing the LRASM onboard sensor systems.

Related: Lockheed Martin to build sophisticated air-to-surface missiles and guidance in deals worth $843.7 million

LRASM is a joint project of the U.S. Defense Advanced Projects Agency (DARPA) in Arlington, Va., the Navy, and the Air Force to design an advanced anti-ship missile that can launch from the Navy F/A-18E/F Super Hornet jet fighter bomber, as well as from the Air Force B-1B Lancer long-range strategic bomber.

In the future LRASM also will launch from the F-35 Lighting II joint strike fighter, as well as from the Navy Mark 41 shipboard Vertical Launch System. The missile travels at high subsonic speeds, and likely will give way in the future to expected new generations of hypersonic missiles. Submarine-launched versions are under consideration.

LRASM is designed to detect and destroy high-priority targets within groups of ships from extended ranges in electronic warfare jamming environments. It is a precision-guided, anti-ship standoff missile based on the Lockheed Martin Joint Air-to-Surface Standoff Missile-Extended Range (JASSM-ER).

Lockheed Martin has been designing LRASM for the last 11 years, primarily under DARPA supervision. The advanced anti-ship missile is intended to replace the ageing Harpoon anti-ship missile. It has a multi-mode radio frequency sensor, a new weapon data-link and altimeter, and an uprated power system.

Related: Raytheon to upgrade venerable Tomahawk missile for next-gen, anti-ship role

The LRASM can be guided toward enemy ships from as far away as 200 nautical miles by its launch aircraft, can receive updates via its datalink, or can use onboard sensors to find its target. LRASM will fly towards its target at medium altitude then drop to low altitude for a sea skimming approach to counter shipboard anti-missile defenses.

The LRASM uses on-board targeting systems to acquire the target independently without the presence of intelligence or supporting services like Global Positioning System (GPS) satellite navigation and data links. Lockheed Martin is designing he missile with advanced counter-countermeasures to evade hostile active defense systems.

The Lockheed Martin LRASM has a 1,000-pound penetrator and blast-fragmentation warhead, multi-mode sensor, weapon data link, and enhanced digital anti-jam global positioning system to detect and destroy selected surface targets within groups of ships.

Related: Raytheon to build RIM-174 air-defense missiles to protect shipboard forces from planes and missiles

LRASM development is in response to a gap in Navy anti-ship missile technology identified in 2008. The standard Navy anti-ship missile is the subsonic Harpoon, which has been in the inventory since 1977.

Since LRASM started development more than a decade ago, however, hypersonic cruise missiles able to fly faster than five times the speed of sound have become one of the Pentagon's top priorities. This has the potential to limit overall LRASM production numbers.

On this contract BAE Systems will do the work in Wayne, N.J.; Greenlawn, N.Y.; and Nashua, N.H. For more information contact BAE Systems online at, or Lockheed Martin Missiles and Fire Control at

Voice your opinion!

To join the conversation, and become an exclusive member of Military Aerospace, create an account today!