Systems & Technology Research to develop affordable RF payload for DARPA Blackjack

Oct. 14, 2020
Systems & Technology Research will build an RF payload for an on-orbit demonstration; and demonstrate a two-plane system in low-Earth orbit.

ARLINGTON, Va. – U.S. military researchers needed a company to develop small, secure, and affordable military satellite communications (SATCOM) payloads for low-Earth orbit (LEO) that capitalize on modern commercial satellite technologies. They found their solution from Systems & Technology Research LLC in Woburn, Mass.

Officials of the U.S. Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., announced a $79.5 million contract to Systems & Technology Research on 30 Sept. 2020 to develop and demonstrate satellite payloads for the DARPA Blackjack program.

Blackjack seeks to develop low-cost space payloads and commoditized satellite buses with low size, weight, power, and cost (SWaP-C) with similar capabilities to today’s military communications satellites that operate at geosynchronous orbit (GEO), but at a fraction of the cost.

Systems & Technology Research will develop payloads for a two satellite on-orbit demonstration; and demonstrate a two-plane system in low-Earth orbit for six months. These jobs represent phases two and three of the Blackjack program.

Related: Raytheon to develop infrared satellite sensor payload for DARPA Blackjack SATCOM and surveillance project

The DARPA Blackjack program seeks to orbit a constellation of small, secure, and affordable military satellites that capitalize on modern commercial satellite technologies.

Blackjack seeks to develop low-cost space payloads and commoditized satellite buses with low size, weight, power, and cost (SWaP-C) with similar capabilities to today’s military communications that operate at geosynchronous orbit (GEO), but at a fraction of the cost.

Military satellites are critical to U.S. warfighting capabilities. Traditionally they are placed in GEO to deliver persistent overhead access to any point on the globe.

Yet in the increasingly contested space environment, these costly and monolithic systems are vulnerable targets that would take years to replace if degraded or destroyed. Moreover, their long development schedules make it difficult or impossible to respond quickly to new threats.

Related: Military researchers approach industry to integrate LEO affordable commercial satellite buses and payloads

The Blackjack program seeks to develop enabling technologies for a global high-speed network backbone in LEO that enables networked, resilient, and persistent military payloads that provide infinite over-the-horizon sensing, signals, and communications capabilities.

Historically, U.S. Department of Defense (DOD) satellites have been custom-designed, with lengthy and expensive design and upgrade cycles. The evolution of commercial space, however, has led to LEO broadband Internet communications satellites that could offer attractive economies of scale.

The Blackjack program will emphasize a commoditized bus and low-cost interchangeable payloads with short design cycles and frequent technology upgrades, based on a ‘good enough’ payloads optimized for more than one type of bus.

Commoditized satellite buses based on open-architecture electrical, software, and mesh network interface control could provide a way for dozens or hundreds of different types of military satellite payloads to operate in low-Earth orbit, DARPA officials say.

Related: Lockheed Martin picks SEAKR Engineering to help develop; secure anti-jam SATCOM payload for PTS satellites

The Blackjack program has three primary objectives:

-- develop payload and mission-level autonomy software with on-orbit distributed decision processors that can operate autonomously with on-orbit data processing, and perform shared tasks on-orbit;

-- use advanced commercial manufacturing for military payloads and the spacecraft bus, including high-rate manufacturing using commercial off-the-shelf (COTS)-like parts, reduced screening and acceptance testing for individual spacecraft, and reduced expectations for spacecraft life; and

-- demonstrate satellite payloads in LEO that operate on par with current GEO systems with the spacecraft at costs of less than $6 million per satellite.

To reduce integration risk, DARPA has hired SEAKR Engineering Inc. in Centennial, Colo., to develop an avionics unit for each Blackjack spacecraft called Pit Boss, which will have a high-speed processor and encryption devices that will function as a common network and electrical interface.

Related: Two companies join project to design SWaP-C-optimized communications and surveillance satellites

Not only will Pit Boss provide a common electrical interface to each payload, but it also will provide mission level autonomy functions, enable on-orbit edge computing, manage communication between Blackjack satellites and ground users, provide a command and telemetry link to the bus, and encrypt payload data.

Every Blackjack satellite will consist of one commoditized bus capable of broadband rate global communications to other nodes, one Pit Boss control unit, and one or more military payloads that can operate autonomously for more than 24 hours.

The goal is to develop a 60-to-200-satellite constellation operating at altitudes of between 310.7 miles and 807.8 miles above the Earth’s surface. One operations center will cover all government satellites and payloads, and the constellation will be able to operate without the operations center for 30 days. Blackjack payload data processing will be performed on-orbit without the assistance of ground data processing.

For more information contact Systems & Technology Research online at www.stresearch.com, or DARPA at www.darpa.mil.

Voice your opinion!

To join the conversation, and become an exclusive member of Military Aerospace, create an account today!